Что решается первым сложение или умножение: Выражения без скобок — урок. Математика, 2 класс.

Содержание

В каком порядке решаются примеры без скобок. Порядок выполнения действий в выражениях без скобок и со скобками

На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют

действиями первой ступени .

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления — это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 — 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 — 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 — (20 — 7) +15

32 + 9 * (19 — 16)

Будем действовать по правилу. В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие — умножение, второе — деление, третье — вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

37 + 9 — 6: 2 * 3 =

18: (11 — 5) + 47=

7 * 3 — (16 + 4)=

Рассуждаем так.

37 + 9 — 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие — деление, второе — умножение. Третье действие должно быть сложение, четвертое — вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — деление, третье — сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — умножение, третье — вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого — вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Festival.1september.ru ().
  2. Sosnovoborsk-soobchestva.ru ().
  3. Openclass.ru ().

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

перемножить в любом порядке.

Методически данное правило имеет целью подготовить ребенка к знакомству со способами умножения в столбик чисел, оканчиваю­щихся нулями, поэтому с ним знакомятся только в четвертом клас­се. Реально данное свойство умножения позволяет рационализи­ровать устные вычисления как во 2, так и в 3 классе.

Например:

Вычисли: (7 2) 5 = …

В данном случае намного легче вычислить вариант

7 (2 5) = 7 10 — 70.

Вычисли: 12 (5 7) = …

8 данном случае намного легче вычислить вариант (12-5)-7 = 60-7 = 420.

Приемы вычислений

1. Умножение и деление чисел, оканчивающихся нулем: 20 3; 3 20; 60: 3; 80: 20

Вычислительный прием в данном случае сводится к умноже­нию и делению однозначных чисел, выражающих число десятков в заданных числах. Например:

20 3 =… 3 20 =… 60:3 = …

2 дес. 3 = 20 3 = 60 б дес.: 3 = 2 дес.

20 — 3 = 60 3 20 = 60 60: 3 = 20

Для случая 80:20 может быть использовано два способа вычис­лений: тот, что использовался в предыдущих случаях, и способ под­бора частного.

Например: 80: 20 =… 80: 20 =…

8 дес.: 2 дес. = 4 или 20 4 = 80

80: 20 = 4 80: 20 = 4

В первом случае использовался прием представления двузнач­ных десятков в виде разрядных единиц, что сводит рассматривае­мый случай к табличному (8:2). Во втором случае цифра частного находится подбором и проверяется умножением. Во втором случае ребенок возможно не сразу подберет верную цифру частного, это означает, что проверка будет выполнена не один раз.

2. Прием умножения двузначного числа на однозначное: 23 4; 4-23

При умножении двузначного числа на однозначное актуализи­руются следующие знания и умения:

В случае умножения вида 4 23 сначала применяется переста­новка множителей, а затем та же схема умножения, что и выше.

3. Прием деления двузначного числа на однозначное: 48:3; 48:2

При делении двузначного числа на однозначное актуализиру­ются следующие знания и умения:

4. Прием деления двузначного числа на двузначное: 68: 17

При делении двузначного числа на двузначное необходимы сле­дующие знания и умения:

Сложность последнего приема состоит в том, что ребенок не может сразу подобрать нужную цифру частного и выполняет несколько прове­рок подобранных цифр, что требует достаточно сложных вычислений. Многие дети тратят много времени на выполнение вычислений этого вида, поскольку начинают не столько подбирать подходящую цифру частного, сколько перебирают все множители подряд, начиная с двух.

С целью облегчения вычислений могут быть использованы два приема:

1) ориентировка на последнюю цифру делимого;

2) прием округления.

Первый прием предполагает, что при подборе возможной циф­ры частного ребенок ориентируется на знание таблицы умноже­ния, сразу перемножая подобранную цифру (число) и последнюю цифру делителя.

Например, 3-7 = 21. Последняя цифра числа 68 — это 8, значит нет смысла умножать 17 на 3, последняя цифра делителя все равно не сов­падает. Пробуем в частном число 4 — умножаем 7 4 = 28. Последняя цифра совпадает, значит имеет смысл найти произведение 17 4.

Второй прием предполагает округление делителя и подбор циф­ры частного с ориентиром на округленный делитель.

Например, 68:17 делитель 17 округляется до 20. Примерная циф­ра частного 3 дает при проверке 20 3 = 60

Эти приемы позволяют сократить затраты сил и времени при выполнении вычислений данного вида, но требуют хорошего зна­ния таблицы умножения и умения округлять числа.

Целые числа, оканчивающиеся цифрами 0,1,2,3,4, округляют до ближайшего целого десятка, отбрасы­вая эти цифры.

Например, числа 12, 13, 14 следует округлять до 10. Числа 62, 63, 64 округляют до 60.

Целые числа, оканчивающиеся цифрами 5, 6, 7,8,9, округляют до ближайшего целого десятка в большую сторону.

Например, числа 15,16,17,18,19 округляют до 20. Числа 45,47, 49 округляют до 50.

Порядок действий в выражениях, содержащих умножение и деление

Правила порядка выполнения действий задают основные при­знаки выражений, на которые следует ориентироваться при вычис­лении их значений.

Первые правила, определяющие порядок действий в арифме­тических выражениях, задавали порядок действий в выражениях, содержащих действия сложения и вычитания:

1. В выражениях без скобок, содержащих только действия сложения и вычитания, действия выполня­ются в том порядке, как они записаны: слева направо.

2. Действия в скобках выполняют первыми.

3. Если выражение содержит только действия сло­жения, то два соседних слагаемых всегда можно заме­нить их суммой (сочетательное свойство сложения).

В 3 классе изучаются новые правила порядка выполнения дей­ствий в выражениях, содержащих умножение и деление:

4. В выражениях без скобок, содержащих только умножение и деление, действия выполняются в том порядке, как они записаны: слева направо.

5. В выражениях без скобок умножение и деление выполняются раньше, чем сложение и вычитание.

При этом установка на выполнение действия в скобках первым сохраняется. Возможные случаи нарушения этой установки были оговорены ранее.

Правила порядка выполнения действий являются общими пра­вилами вычислений значений математических выражений (при­меров), которые сохраняются на протяжении всего периода изучения математики в школе. В связи с этим формирование у ре­бенка четкого понимания алгоритма порядка выполнения дейст­вий является важной преемственной задачей обучения математике в начальной школе. Проблема заключается в том, что правила по­рядка выполнения действий являются достаточно вариативными и не всегда однозначно заданными.

Например, в выражении 48-3 + 7 + 8 следует по общей уста­новке применять правило 1 для выражения без скобок, содержа­щего действия сложения и вычитания. В то же время, как вариант рациональных вычислений, можно использовать прием замены суммой части 7 + 8, поскольку после вычитания числа 3 из 48 по­лучится 45, к чему удобно прибавить 15.

Однако подобный разбор такого выражения в начальных клас­сах не предусмотрен, поскольку есть опасения, что при неадекват­ном понимании такого подхода ребенок будет применять его в случаях вида 72 — 9 — 3 + 6. В данном случае замена выражения 3 + 6 суммой невозможна, она приведет к неверному ответу.

Большая вариативность в применении всей группы правил и вариантов правил при определении порядка действий требует значительной гибкости мышления, хорошего понимания смысла математических действий, последовательности мыслительных дей­ствий, математического «чутья» и интуиции (математики называ­ют это «чувство числа»). Реально намного проще приучить ребенка жестко соблюдать четко установленный порядок анализа число­вого выражения с точки зрения тех признаков, на которые ориен­тировано каждое правило.

Определяя порядок действий, рассуждай так:

1) Если есть скобки, выполняю первым действие, за­писанное в скобках.

2) Выполняю по порядку умножение и деление.

3) Выполняю по порядку сложение и вычитание.

Данный алгоритм задает порядок действий достаточно одно­значно, хотя и с небольшими вариациями.

В этих выражениях порядок действии определен алгоритмом однозначно и является единственно возможным. Приведем другие примеры

После выполнения умножения и деления в данном примере можно было сразу к 54 прибавить 6, а из 18 вычесть 9, пбсле чего результаты сложить. Технически было бы значительно легче, чем путь, обусловленный алгоритмом, возможен изначально другой по­рядок действий в примере:

Таким образом, вопрос о формировании умения определять по­рядок действий в выражениях в начальной школе определенным образом противоречит необходимости обучать ребенка способам рациональных вычислений.

Например, в случае порядок действий определен алгоритмом абсолютно однозначно, при этом требует отребенка сложнейших вычислений в уме с переходами через разряд: 42 — 7 и 35 + 8.

Если же после выполнения деления 21:3, выполнить сложение 42 + 8 = 50, а затем вычитание 50 — 7 = 43, что намного легче тех­нически, ответ будет тот же. Этот путь вычислений противоречит установке данного в учебнике

И деление чисел — действиями второй ступени.
Порядок выполнения действий при нахождении значений выражений определяется следующими правилами:

1. Если в выражении нет скобок и оно содержит действия только одной ступени, то их выполняют по порядку слева направо.
2. Если выражение содержит действия первой и второй ступени и в нем нет скобок, то сначала выполняют действия второй ступени, потом — действия первой ступени.
3. Если в выражении есть скобки, то сначала выполняют действия в скобках (учитывая при этом правила 1 и 2).

Пример 1. Найдем значение выражения

а) х + 20 = 37;
б) у + 37 = 20;
в) а — 37 = 20;
г) 20 — m = 37;
д) 37 — с = 20;
е) 20 + k = 0.

636. При вычитании каких натуральных чисел может получиться 12? Сколько пар таких чисел? Ответьте на те же вопросы для умножения и для деления.

637. Даны три числа: первое — трехзначное, второе — значение частного от деления шестизначного числа на десять, а третье — 5921. Можно ли указать наибольшее и наименьшее из этих чисел?

638. Упростите выражение:

а) 2а + 612 + 1а + 324;
б) 12у + 29у + 781 + 219;

639. Решите уравнение:

а) 8х — 7х + 10 = 12;
б) 13у + 15у- 24 = 60;
в) Зz — 2z + 15 = 32;
г) 6t + 5t — 33 = 0;
д) (х + 59) : 42 = 86;
е) 528: k — 24 = 64;
ж) р: 38 — 76 = 38;
з) 43m- 215 = 473;
и) 89n + 68 = 9057;
к) 5905 — 21 v = 316;
л) 34s — 68 = 68;
м) 54b — 28 = 26.

640. Животноводческая ферма обеспечивает привес 750 г на одно животное в сутки. Какой привес получает комплекс за 30 дней на 800 животных?

641. В двух больших и пяти маленьких бидонах 130 л молока. Сколько молока входит в маленький бидон, если его вместимость в четыре раза меньше вместимости большего?

642. Собака увидела хозяина, когда была от него на расстоянии 450 м, и побежала к нему со скоростью 15 м/с. Какое расстояние между хозяином и собакой будет через 4 с; через 10 с; через t с?

643. Решите с помощью уравнения задачу:

1) У Михаила в 2 раза больше орехов, чем у Николая, а у Пети в 3 раза больше, чем у Николая. Сколько орехов у каждого, если у всех вместе 72 ореха?

2) Три девочки собрали на берегу моря 35 ракушек. Галя нашла в 4 раза больше, чем Маша, а Лена — в 2 раза больше, чем Маша. Сколько ракушек нашла каждая девочка?

644. Составьте программу вычисления выражения

8217 + 2138 (6906 — 6841) : 5 — 7064.

Запишите эту программу в виде схемы. Найдите значение выражения.

645. Напишите выражение по следующей программе вычисления:

1. Умножить 271 на 49.
2. Разделить 1001 на 13.
3. Результат выполнения команды 2 умножить на 24.
4. Сложить результаты выполнения команд 1 и 3.

Найдите значение этого выражения.

646. Напишите выражение по схеме (рис. 60). Составьте программу его вычисления и найдите его значение.

647. Решите уравнение:

а) Зх + bх + 96 = 1568;
б) 357z — 1492 — 1843 — 11 469;
в) 2у + 7у + 78 = 1581;
г) 256m — 147m — 1871 — 63 747;
д) 88 880: 110 + х = 809;
е) 6871 + р: 121 = 7000;
ж) 3810 + 1206: у = 3877;
з) к + 12 705: 121 = 105.

648. Найдите частное:

а) 1 989 680: 187; в) 9 018 009: 1001;
б) 572 163: 709; г) 533 368 000: 83 600.

649. Теплоход 3 ч шел по озеру со скоростью 23 км/ч, а потом 4 ч по реке. Сколько километров прошел теплоход за эти 7 ч, если по реке он шел на 3 км/ч быстрее, чем по озеру?

650. Сейчас расстояние между собакой и кошкой 30 м. Через сколько секунд собака догонит кошку, если скорость собаки 10 м/с, а кошки — 7 м/с?

651. Найдите в таблице (рис. 61) все числа по порядку от 2 до 50. Это упражнение полезно выполнить несколько раз; можно соревноваться с товарищем: кто быстрее отыщет все числа?

Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений

Планы конспектов уроков по математике 5 класса скачать , учебники и книги бесплатно, разработки уроков по математике онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Порядок выполнения действий — Математика 3 класс (Моро)

Краткое описание:

В жизни вы постоянно совершаете различные действия: встаете, умываетесь, делаете зарядку, завтракаете, идете в школу. Как вы думаете, можно ли поменять этот порядок действий? Например, позавтракать, а потом умыться. Наверное, можно. Может быть, будет не очень удобно завтракать неумытому, но ничего страшного из-за этого не случится. А в математике можно ли менять порядок действий по своему усмотрению? Нет, математика – точная наука, поэтому даже малейшие изменения в порядке действий приведут к тому, что ответ числового выражения станет неверным. Во втором классе вы уже познакомились с некоторыми правилами порядка действий. Так, вы, наверное, помните, что руководят порядком в выполнении действий скобки. Они показывают, что действия нужно выполнить первым. Какие существуют другие правила порядка действий? Отличается ли порядок действий в выражениях со скобками и без скобок? На эти вопросы вам предстоит найти ответы в учебнике математики 3 класса при изучении темы «Порядок выполнения действий». Вы должны обязательно потренироваться в применении изученных правил, а если понадобиться, то найти и исправить ошибки в установлении порядка действий в числовых выражениях. Помните, пожалуйста, что порядок важен в любом деле, но в математике он имеет особое значение!

Составление выражения со скобками

1. Составь из следующих предложений выражения со скобками и реши их.

Из числа 16 вычти сумму чисел 8 и 6.
Из числа 34 вычти сумму чисел 5 и 8.
Сумму чисел 13 и 5 вычесть из числа 39.
Разность чисел 16 и 3 прибавь к числу 36
Разность чисел 48 и 28 прибавь к числу 16.

2. Реши задачи, сперва составив правильно выражения, а за тем последовательно их решив:

2.1. Папа принёс из леса мешок с орехами. Коля взял из мешка 25 орешков и съел. За тем Маша взяла из мешка 18 орешков. Мама то же взяла из мешка 15 орешков, но положила обратно 7 из них. Сколько осталось в итоге орешков в мешке, если в начале их было 78?

2.2. Мастер ремонтировал детали. В начале рабочего дня их было 38. В первой половине дня он смог отремонтировать 23 из них. После полудня ему принесли еще столько же, сколько было в самом начале дня. Во второй половине он отремонтировал еще 35 деталей. Сколько деталей ему осталось отремонтировать?

3. Реши примеры правильно выполняя последовательность действий:

45: 5 + 12 * 2 -21:3
56 — 72: 9 + 48: 6 * 3
7 + 5 * 4 — 12: 4
18: 3 — 5 + 6 * 8

Решение выражений со скобками

1. Реши примеры правильно раскрывая скобки:

1 + (4 + 8) =

8 — (2 + 4) =

3 + (6 — 5) =

59 + 25 =

82 + 14 =

29 + 52 =

18 + 47 =

39 + 53 =

37 + 53 =

25 + 63 =

87 + 17 =

19 + 52 =

2. Реши примеры правильно выполняя последовательность действий:

2.1. 36: 3 + 12 * (2 — 1) : 3
2.2. 39 — (81: 9 + 48: 6) * 2
2.3. (7 + 5) * 2 — 48: 4
2.4. 18: 3 + (5 * 6) : 2 — 4

3. Реши задачи, сперва составив правильно выражения, а за тем последовательно их решив:

3.1. На складе было 25 упаковок стирального порошка. В один магазин увезли 12 упаковок. За тем во второй магазин увезли столько же. После этого на склад привезли в 3 раза больше упаковок, чем было раньше. Сколько упаковок порошка стало на складе?

3.2. В гостинице проживало 75 туристов. За первый день из гостиницы уехали 3 группы по 12 человек, а заехали 2 группы по 15 человек. На второй день уехали еще 34 человека. Сколько туристов осталось в гостинице к концу 2 дня?

3.3. В химчистку привезли 2 мешка одежды по 5 вещей в каждом мешке. За тем забрали 8 вещей. После полудня привезли ещё 18 вещей на стирку. А забрали только 5 выстиранных вещей. Сколько вещей в химчистке к концу дня, если в начале дня там было 14 вещей?

ФИ _________________________________

21: 3 * 6 — (18 + 14) : 8 =

63: (81: 9) + (8 * 7 — 2) : 6 =

64:2: 4+ 9*7-9*1=

37 *2 + 180: 9 – 36: 12 =

52 * 10 – 60: 15 * 1 =

72: 4 +58:2=

5 *0: 25 + (72: 1 – 0) : 9 =

21: (3 * 7) – (7* 0 + 1)*1 =

6:6+0:8-8:8=

91: 7 + 80: 5 – 5: 5 =

64:4 — 3*5 +80:2=

(19*5 – 5) : 30 =

19 + 17 * 3 – 46 =

(39+29) : 4 + 8*0=

(60-5) : 5 +80: 5=

54 – 26 + 38: 2 =

63: (7*3) *3=

(160-70) : 18 *1=

200 – 80: 5 + 3 * 4 =

(29+25): (72:8)=

72:25 + 3* 17=

80: 16 + 660: 6 =

3 * 290 – 800=

950:50*1-0=

(48: 3) : 16 * 0 =

90-6*6+29=

5* (48-43) +15:5*7=

54: 9 *8 — 14: 7 * 4 =

63: 7*4+70:7 * 5=

24: 6*7 — 7*0=

21: 7 * 8 + 32: 8 * 4 =

27: 3* 5 + 26-18 *4=

54: 6*7 — 0:1=

45: 9 * 6 + 7 * 5 – 26 =

28: 7 *9 + 6 * (54 – 47)=

6*(9: 3) — 40:5 =

21 * 1 — 56: 7 – 8 =

9 * (64: 8) — 18:18

3 *(14: 2) — 63:9=

4 * 8 + 42: 6 *5 =

0*4+0:5 +8* (48: 8)=

56:7 +7*6 — 5*1=

31 * 3 — 17 – 80: 16 * 1 =

57:19 *32 — 11 *7=

72-96:8 +60:15 *13=

36 + 42: 3 + 23 + 27 *0 =

56:14 *19 — 72:18=

(86-78:13)* 4=

650 – 50 * 4 + 900: 100 =

630: 9 + 120 * 5 + 40=

980 – (160 + 20) : 30=

940 — (1680 – 1600) * 9 =

29* 2+26 – 37:2=

72:3 +280: (14*5)=

300: (5 *60) * (78: 13) =

63+ 100: 4 – 8*0=

84:7+70:14 – 6:6=

45: 15 – 180: 90 + 84: 7 =

32+51 + 48:6 * 5=

54:6 ?2 – 70:14=

38: 2 – 48: 3 + 0 * 9 =

30:6 * 8 – 6+3*2=

(95:19) *(68:2)=

(300 — 8 * 7) * 10 =

1:1 — 0*0 + 1*0 — 1*1=

(80: 4 – 60:30) *5 =

2 * (120: 6 – 80: 20) =

56:4+96:3- 0*7=

20+ 20: 4 — 1*5=

(18 + 14) : 8 – (7 *0 + 1) *1 =

(8*7-2):6 +63: (7*3)=

(50-5) : 5+21: (3*7)=

19 + 17 * 3 – 60: 15 * 1 =

80: 5 +3*5 +80:2=

54: 9 *8-64:4 +16*0=

72 * 10 — 64: 2: 4 =

84 – 36 + 38:2

91:13+80:5 – 5:5

300 – 80: 5 + 6 * 4 =

950:190 *1+14: 7*4=

(39+29) : 17 + 8*0=

(120 — 30) : 18 * 1- 72: 25 =

210:30*60-0:1=

90-6*7+3* 17=

240: 60 *7 – 7 * 0 =

60:60+0:80-80:80=

720: 40 +580:20=

9 *7 – 9 *1 + 5 * 0: 25 =

21: 7 * 6 +32: 4 *5=

80:16 +66:6 -63:(81:9)=

(19 * 5 – 5) : 30 + 70: 7 =

15:5*7 + 63: 7 * 5=

54: 6 * 7 — (72:1-0):9=

3 *290 – 600 – 5 * (48 – 43) =

(300-89*7)*10 — 3?2=

(80: 4) +30*2+ 180: 9=

30: 6 * 8 – 6 + 48: 3 + 0 *9 =

(95:19) *(68:34) — 60:30*5=

27: 3*5 — 48:3=

3* 290 – 800 + 950: 50 =

80:16 +660:6*1-0=

90-6*6+ 15:5*7=

5*(48 — 43) + (48: 3) :16*0=

280: (14*5) +630: 9*0=

300: (50*6)* (78: 6)=

Если в примерах встретится вопросительный знак (?), следует его заменить на знак * — умножение.

1. РЕШИ ВЫРАЖЕНИЯ:

35: 5 + 36: 4 — 3
26 + 6 х 8 – 45: 5 24: 6 + 18 – 2 х 6
9 х 6 – 3 х 6 + 19 – 27:3

2. РЕШИ ВЫРАЖЕНИЯ:

48: 8 + 32 – 54: 6 + 7 х 4
17 + 24: 3 х 4 – 27: 3 х 2 6 х 4: 3 + 54: 6: 3 х 6 + 2 х 9
100 – 6 х 2: 3 х 9 – 39 + 7 х 4

3. РЕШИ ВЫРАЖЕНИЯ:

100 – 27: 3 х 6 + 7 х 4
2 х 4 + 24: 3 + 18: 6 х 9 9 х 3 – 19 + 6 х 7 – 3 х 5
7 х 4 + 35: 7 х 5 – 16: 2: 4 х 3

4. РЕШИ ВЫРАЖЕНИЯ:

32: 8 х 6: 3 + 6 х 8 – 17
5 х 8 – 4 х 7 + 13 — 11 24: 6 + 18: 2 + 20 – 12 + 6 х 7
21: 3 – 35: 7 + 9 х 3 + 9 х 5

5. РЕШИ ВЫРАЖЕНИЯ:

42: 7 х 3 + 2 + 24: 3 – 7 + 9 х 3
6 х 6 + 30: 5: 2 х 7 — 19 90 — 7 х 5 – 24: 3 х 5
6 х 5 – 12: 2 х 3 + 49

6. РЕШИ ВЫРАЖЕНИЯ:

32: 8 х 7 + 54: 6: 3 х 5
50 – 45: 5 х 3 + 16: 2 х 5 8 х 6 + 23 – 24: 4 х 3 + 17
48: 6 х 4 + 6 х 9 – 26 + 13

7. РЕШИ ВЫРАЖЕНИЯ:

42: 6 + (19 + 6) : 5 – 6 х 2
60 – (13 + 22) : 5 – 6 х 4 + 25 (27 – 19) х 4 + 18: 3 + (8 + 27) :5 -17
(82 – 74) : 2 х 7 + 7 х 4 — (63 – 27): 4
8. РЕШИ ВЫРАЖЕНИЯ:

90 – (40 – 24: 3) : 4 х 6 + 3 х 5
3 х 4 + 9 х 6 – (27 + 9) : 4 х 5
(50 – 23) : 3 + 8 х 5 – 6 х 5 + (26 + 16) : 6
(5 х 6 – 3 х 4 + 48: 6) +(82 – 78) х 7 – 13
54: 9 + (8 + 19) : 3 – 32: 4 – 21: 7 + (42 – 14) : 4 – (44 14) : 5

9. РЕШИ ВЫРАЖЕНИЯ:

9 х 6 – 6 х 4: (33 – 25) х 7
3 х (12 – 8) : 2 + 6 х 9 — 33 (5 х 9 — 25) : 4 х 8 – 4 х 7 + 13
9 х (2 х 3) – 48: 8 х 3 + 7 х 6 — 34

10. РЕШИ ВЫРАЖЕНИЯ:

(8 х 6 – 36: 6) : 6 х 3 + 5 х 9
7 х 6 + 9 х 4 – (2 х 7 + 54: 6 х 5) (76 – (27 + 9) + 8) : 6 х 4
(7 х 4 + 33) – 3 х 6:2

11. РЕШИ ВЫРАЖЕНИЯ:

(37 + 7 х 4 – 17) : 6 + 7 х 5 + 33 + 9 х 3 – (85 – 67) : 2 х 5
5 х 7 + (18 + 14) : 4 – (26 – 8) : 3 х 2 – 28: 4 + 27: 3 – (17 + 31) : 6

12. РЕШИ ВЫРАЖЕНИЯ:

(58 – 31) : 3 – 2 + (58 – 16) : 6 + 8 х 5 – (60 – 42) : 3 + 9 х 2
(9 х 7 + 56: 7) – (2 х 6 – 4) х 3 + 54: 9

13. РЕШИ ВЫРАЖЕНИЯ:

(8 х 5 + 28: 7) + 12: 2 – 6 х 5 + (13 – 5) х 4 + 5 х 4
(7 х 8 – 14: 7) + (7 х 4 + 12: 6) – 10: 5 + 63: 9

Тест «Порядок арифметических действий» (1 вариант)
1(1б)
2(1б)
3(1б)
4(3б)
5(2б)
6(2б)
7(1б)
8(1б)
9(3б)
10(3б)
11(3б)
12(3б)

110 – (60 +40) :10 х 8

а) 800 б) 8 в) 30

а) 3 4 6 5 2 1 4 5 6 3 2 1

3 4 6 5 1 2

5. В каком из выражений последнее действие умножение?
а) 1001:13 х (318 +466) :22

в) 10000 – (5 х 9+56 х 7) х2
6. В каком из выражений первое действие вычитание?
а) 2025:5 – (524 – 24:6) х45
б) 5870 + (90-50 +30) х8 -90
в) 5400:60 х (3600:90 -90)х5

Выбери верный ответ:
9. 90 – (50- 40:5) х 2+ 30
а) 56 б) 92 в) 36
10. 100- (2х5+6 — 4х4) х2
а) 100 б) 200 в) 60
11. (10000+10000:100 +400) : 100 +100
а) 106 б) 205 в) 0
12. 150: (80 – 60:2) х 3
а) 9 б) 45 в) 1

Тест «Порядок арифметических действий»
1(1б)
2(1б)
3(1б)
4(3б)
5(2б)
6(2б)
7(1б)
8(1б)
9(3б)
10(3б)
11(3б)
12(3б)
1. Какое действие в выражении сделаешь первым?
560 – (80+20) :10 х7
а) сложение б) деление в) вычитание
2. Какое действие в этом же выражении сделаешь вторым?
а) вычитание б) деление в) умножение
3. Выбери правильный вариант ответа данного выражения:
а) 800 б) 490 в) 30
4. Выбери верный вариант расстановки действий:
а) 3 4 6 5 2 1 4 5 6 3 2 1
320: 8 х 7 + 9 х (240 – 60:15) в) 320:8 х 7+9х(240 – 60:15)

3 4 6 5 2 1
б) 320: 8 х 7 + 9 х (240 – 60:15)
5. В каком из выражений последнее действие деление?
а) 1001:13 х (318 +466) :22
б) 391 х37:17 х (2248:8 – 162)
в) 10000 – (5 х 9+56 х 7) х2
6. В каком из выражений первое действие сложение?
а) 2025:5 – (524 + 24 х6) х45
б) 5870 + (90-50 +30) х8 -90
в) 5400:60 х (3600:90 -90)х5
7. Выбери верное высказывание: «В выражении без скобок действия выполняются:»
а) по порядку б) х и: , затем + и — в) + и -, затем х и:
8. Выбери верное высказывание: «В выражении со скобками действия выполняются:»
а) сначала в скобках б)х и:, затем + и — в) по порядку записи
Выбери верный ответ:
9. 120 – (50- 10:2) х 2+ 30
а) 56 б) 0 в) 60
10. 600- (2х5+8 — 4х4) х2
а) 596 б) 1192 в) 60
11. (20+20000:2000 +30) : 20 +200
а) 106 б) 203 в) 0
12. 160: (80 – 80:2) х 3
а) 120 б) 0 в) 1

Как решать примеры со скобками порядок действий. Порядок выполнения действий, правила, примеры

Правила порядка выполнения действий в сложных выражениях изучаются во 2 классе, но практически некоторые из них дети используют еще в 1 классе.

Сначала рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами производят либо только сложение и вычитание, либо только умножение и деление. Необходимость введения выражений, содержащих два и более арифметических действий одной ступени, возникает при знакомстве учеников с вычислительными приемами сложения и вычитания в пределах 10, а именно:

Аналогично: 6 — 1 — 1, 6 — 2 — 1, 6 — 2 — 2.

Так как для нахождения значений этих выражений школьники обращаются к предметным действиям, которые выполняются в определенном порядке, то они легко усваивают тот факт, что арифметические действия (сложение и вычитание), которые имеют место в выражениях, выполняются последовательно слева направо.

С числовыми выражениями, содержащими действия сложения и вычитания, а также скобки, учащиеся впервые встречаются в теме «Сложение и вычитание в пределах 10». Когда дети встречаются с такими выражениями в 1 классе, например: 7 — 2 + 4, 9 — 3 — 1 , 4 +3 — 2; во 2 классе, например: 70 — 36 +10, 80 — 10 — 15, 32+18 — 17; 4*10:5, 60:10*3, 36:9*3, учитель показывает, как читают и записывают такие выражения и как находят их значение (например, 4*10:5 читают: 4 умножить на 10 и полученный результат разделить на 5). К моменту изучения во 2 классе темы «Порядок действий» учащиеся умеют находить значения выражений этого вида. Цель работы на данном этапе — опираясь практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило. Учащиеся самостоятельно решают подобранные учителем примеры и объясняют, в каком порядке выполняли; действия в каждом примере. Затем формулируют сами или читают по учебнику вывод: если в выражении без скобок указаны только действия сложения и вычитания (или только действия умножения и деления), то их выполняют в том порядке, в каком они записаны (т.е. слева направо).

Несмотря на то, что в выражениях вида а+в+с, а+(в+с) и (а+в)+с наличие скобок не влияет на порядок выполнения действий в силу сочетательного закона сложения, на этом этапе учащихся целесообразнее сориентировать на то, что сначала выполняется действие в скобках. Это связано с тем, что для выражений вида а — (в+с) и а — (в — с) такое обобщение неприемлемо и учащимся на начальном этапе довольно трудно будет сориентироваться в назначении скобок для различных числовых выражений. Использование скобок в числовых выражениях, содержащих действия сложения и вычитания, в дальнейшем получает свое развитие, которое связано с изучением таких правил, как прибавление суммы к числу, числа к сумме, вычитание суммы из числа и числа из суммы. Но при первом знакомстве со скобками важно нацелить учащихся на то, что сначала выполняется действие в скобках.

Учитель обращает внимание детей на то, как важно соблюдать это правило при вычислениях, иначе можно получить неверное равенство. Например, учащиеся объясняют, каким образом, получены значения выражений: 70 — 36 +10=24, 60:10 — 3 =2, почему они неверны, какие значения в действительности имеют эти выражения. Аналогично изучают порядок действий в выражениях со скобками вида: 65 — (26 — 14), 50:(30 — 20), 90:(2 * 5). С такими выражениями учащиеся также знакомы и умеют их читать, записывать и вычислять их значение. Объяснив порядок выполнения действий в нескольких таких выражениях, дети формулируют вывод: в выражениях со скобками первым выполняется действие над числами, записанными в скобках. Рассматривая эти выражения нетрудно показать, что действия в них выполняются не в том порядке, в каком записаны; чтобы показать другой порядок их выполнения, и использованы скобки.

Следующим вводится правило порядка выполнения действий в выражениях без скобок, когда в них содержатся действия первой и второй ступени. Поскольку правила порядка действий приняты по договоренности, учитель сообщает их детям или же учащиеся знакомятся с ними по учебнику. Чтобы учащиеся усвоили введенные правила, наряду с тренировочными упражнениями включают решение примеров с пояснением порядка выполнения их действий. Эффективны также упражнения в объяснении ошибок на порядок выполнения действий. Например, из заданных пар примеров предлагается выписать только те, где вычисления выполнены по правилам порядка действий:

После объяснения ошибок можно дать задание: используя скобки, изменить порядок действий так, чтобы выражение имело заданное значение. Например, чтобы первое из приведенных выражений имело значение, равное 10, надо записать его так: (20+30):5=10.

Особенно полезны упражнения на вычисление значения выражения, когда ученику приходится применять все изученные правила. Например, на доске или в тетрадях записывается выражение 36:6+3*2. Учащиеся вычисляют его значение. Затем по заданию учителя дети изменяют с помощью скобок порядок действий в выражении:

  • 36:6+3-2
  • 36:(6+3-2)
  • 36:(6+3)-2
  • (36:6+3)-2

Интересным, но более трудным является обратное упражнение: расставить скобки так, чтобы выражение имело заданное значение:

  • 72-24:6+2=66
  • 72-24:6+2=6
  • 72-24:6+2=10
  • 72-24:6+2=69

Также интересными являются упражнения следующего вида:

  • 1. Расставьте скобки так, чтобы равенства были верными:
  • 25-17:4=2 3*6-4=6
  • 24:8-2=4
  • 2. Поставьте вместо звездочек знаки «+» или «-» так, чтобы получились верные равенства:
  • 38*3*7=34
  • 38*3*7=28
  • 38*3*7=42
  • 38*3*7=48
  • 3. Поставьте вместо звездочек знаки арифметических действий так, чтобы равенства были верными:
  • 12*6*2=4
  • 12*6*2=70
  • 12*6*2=24
  • 12*6*2=9
  • 12*6*2=0

Выполняя такие упражнения, учащиеся убеждаются в том, что значение выражения может измениться, если изменяется порядок действий.

Для усвоения правил порядка действий необходимо в 3 и 4 классах включать все более усложняющиеся выражения, при вычислении значений которых ученик применял бы каждый раз не одно, а два или три правила порядка выполнения действий, например:

  • 90*8- (240+170)+190,
  • 469148-148*9+(30 100 — 26909).

При этом числа следует подбирать так, чтобы они допускали выполнение действий в любом порядке, что создает условия для сознательного применения изученных правил.

При расчётах примеров нужно соблюдать определённый порядок действий. С помощью правил ниже, мы разберёмся в каком порядке выполняются действия и для чего нужны скобки.

Если в выражении скобок нет, то:

  • сначала выполняем слева направо все действия умножения и деления;
  • а потом слева направо все действия сложения и вычитания.
  • Рассмотрим порядок действий в следующем примере.

    Напоминаем вам, что порядок действий в математике расставляется слева направо (от начала к концу примера).

    При вычислении значения выражения можно вести запись двумя способами.

    Первый способ

    • Каждое действие записывается отдельно со своим номером под примером.
    • После выполнения последнего действия ответ обязательно записывается в исходный пример.
    • При расчёте результатов действий с двузначными и/или трёхзначными числами обязательно приводите свои расчёты в столбик.

      Второй способ

    • Второй способ называется запись «цепочкой». Все вычисления проводятся в точно таком же порядке действий, но результаты записываются сразу после знака равно.
    • Если выражение содержит скобки, то сначала выполняют действия в скобках.

      Внутри самих скобок действует правило порядка действий как в выражениях без скобок.

      Если внутри скобок находятся ещё одни скобки, то сначала выполняются действия внутри вложенных (внутренних) скобок.

      Порядок действий и возведение в степень

      Если в примере содержится числовое или буквенное выражение в скобках, которое надо возвести в степень, то:

      • Сначала выполняем все действия внутри скобок
      • Затем возводим в степень все скобки и числа, стоящие в степени, слева направо (от начала к концу примера).
      • Выполняем оставшиеся действия в обычном порядке
      • Порядок выполнения действий, правила, примеры.

        Числовые,буквенные выражения и выражения с переменными в своей записи могут содержать знаки различных арифметических действий. При преобразовании выражений и вычислении значений выражений действия выполняются в определенной очередности, иными словами, нужно соблюдать порядок выполнения действий .

        В этой статье мы разберемся, какие действия следует выполнять сначала, а какие следом за ними. Начнем с самых простых случаев, когда выражение содержит лишь числа или переменные, соединенные знаками плюс, минус, умножить и разделить. Дальше разъясним, какого порядка выполнения действий следует придерживаться в выражениях со скобками. Наконец, рассмотрим, в какой последовательности выполняются действия в выражениях, содержащих степени, корни и другие функции.

        Навигация по странице.

        Сначала умножение и деление, затем сложение и вычитание

        В школе дается следующее правило, определяющее порядок выполнения действий в выражениях без скобок :

        • действия выполняются по порядку слева направо,
        • причем сначала выполняется умножение и деление, а затем – сложение и вычитание.
        • Озвученное правило воспринимается достаточно естественно. Выполнение действий по порядку слева направо объясняется тем, что у нас принято вести записи слева направо. А то, что умножение и деление выполняется перед сложением и вычитанием объясняется смыслом, который в себе несут эти действия.

          Рассмотрим несколько примеров применения этого правила. Для примеров будем брать простейшие числовые выражения, чтобы не отвлекаться на вычисления, а сосредоточиться именно на порядке выполнения действий.

          Выполните действия 7−3+6 .

          Исходное выражение не содержит скобок, а также оно не содержит умножения и деления. Поэтому нам следует выполнить все действия по порядку слева направо, то есть, сначала мы от 7 отнимаем 3 , получаем 4 , после чего к полученной разности 4 прибавляем 6 , получаем 10 .

          Кратко решение можно записать так: 7−3+6=4+6=10 .

          Укажите порядок выполнения действий в выражении 6:2·8:3 .

          Чтобы ответить на вопрос задачи, обратимся к правилу, указывающему порядок выполнения действий в выражениях без скобок. В исходном выражении содержатся лишь действия умножения и деления, а согласно правилу, их нужно выполнять по порядку слева направо.

          сначала 6 делим на 2 , это частное умножаем на 8 , наконец, полученный результат делим на 3.

          Вычислите значение выражения 17−5·6:3−2+4:2 .

          Сначала определим, в каком порядке следует выполнять действия в исходном выражении. Оно содержит и умножение с делением, и сложение с вычитанием. Сначала слева направо нужно выполнить умножение и деление. Так 5 умножаем на 6 , получаем 30 , это число делим на 3 , получаем 10 . Теперь 4 делим на 2 , получаем 2 . Подставляем в исходное выражение вместо 5·6:3 найденное значение 10 , а вместо 4:2 — значение 2 , имеем 17−5·6:3−2+4:2=17−10−2+2 .

          В полученном выражении уже нет умножения и деления, поэтому остается по порядку слева направо выполнить оставшиеся действия: 17−10−2+2=7−2+2=5+2=7 .

          На первых порах, чтобы не перепутать порядок выполнения действий при вычислении значения выражения, удобно над знаками действий расставить цифры, соответствующие порядку их выполнения. Для предыдущего примера это выглядело бы так: .

          Этого же порядка выполнения действий – сначала умножение и деление, затем сложение и вычитание — следует придерживаться и при работе с буквенными выражениями.

          Действия первой и второй ступени

          В некоторых учебниках по математике встречается разделение арифметических действий на действия первой и второй ступени. Разберемся с этим.

          Действиями первой ступени называют сложение и вычитание, а умножение и деление называют действиями второй ступени .

          В этих терминах правило из предыдущего пункта, определяющее порядок выполнения действий, запишется так: если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем – действия первой ступени (сложение и вычитание).

          Порядок выполнения арифметических действий в выражениях со скобками

          Выражения часто содержат скобки, указывающие порядок выполнения действий. В этом случае правило, задающее порядок выполнения действий в выражениях со скобками , формулируется так: сначала выполняются действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем – сложение и вычитание.

          Итак, выражения в скобках рассматриваются как составные части исходного выражения, и в них сохраняется уже известный нам порядок выполнения действий. Рассмотрим решения примеров для большей ясности.

          Выполните указанные действия 5+(7−2·3)·(6−4):2 .

          Выражение содержит скобки, поэтому сначала выполним действия в выражениях, заключенных в эти скобки. Начнем с выражения 7−2·3 . В нем нужно сначала выполнить умножение, и только потом вычитание, имеем 7−2·3=7−6=1 . Переходим ко второму выражению в скобках 6−4 . Здесь лишь одно действие – вычитание, выполняем его 6−4=2 .

          Подставляем полученные значения в исходное выражение: 5+(7−2·3)·(6−4):2=5+1·2:2 . В полученном выражении сначала выполняем слева направо умножение и деление, затем – вычитание, получаем 5+1·2:2=5+2:2=5+1=6 . На этом все действия выполнены, мы придерживались такого порядка их выполнения: 5+(7−2·3)·(6−4):2 .

          Запишем краткое решение: 5+(7−2·3)·(6−4):2=5+1·2:2=5+1=6 .

          Бывает, что выражение содержит скобки в скобках. Этого бояться не стоит, нужно лишь последовательно применять озвученное правило выполнения действий в выражениях со скобками. Покажем решение примера.

          Выполните действия в выражении 4+(3+1+4·(2+3)) .

          Это выражение со скобками, это означает, что выполнение действий нужно начинать с выражения в скобках, то есть, с 3+1+4·(2+3) . Это выражение также содержит скобки, поэтому нужно сначала выполнить действия в них. Сделаем это: 2+3=5 . Подставив найденное значение, получаем 3+1+4·5 . В этом выражении сначала выполняем умножение, затем – сложение, имеем 3+1+4·5=3+1+20=24 . Исходное значение, после подстановки этого значения, принимает вид 4+24 , и остается лишь закончить выполнение действий: 4+24=28 .

          Вообще, когда в выражении присутствуют скобки в скобках, то часто бывает удобно выполнение действий начинать с внутренних скобок и продвигаться к внешним.

          Например, пусть нам нужно выполнить действия в выражении (4+(4+(4−6:2))−1)−1 . Сначала выполняем действия во внутренних скобках, так как 4−6:2=4−3=1 , то после этого исходное выражение примет вид (4+(4+1)−1)−1 . Опять выполняем действие во внутренних скобках, так как 4+1=5 , то приходим к следующему выражению (4+5−1)−1 . Опять выполняем действия в скобках: 4+5−1=8 , при этом приходим к разности 8−1 , которая равна 7 .

          Порядок выполнения действий в выражениях с корнями, степенями, логарифмами и другими функциями

          Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции, то их значения вычисляются до выполнения остальных действий, при этом также учитываются правила из предыдущих пунктов, задающие порядок выполнения действий. Иными словами, перечисленные вещи, грубо говоря, можно считать заключенными в скобки, а мы знаем, что сначала выполняются действия в скобках.

          Рассмотрим решения примеров.

          Выполните действия в выражении (3+1)·2+6 2:3−7 .

          В этом выражении содержится степень 6 2 , ее значение нужно вычислить до выполнения остальных действий. Итак, выполняем возведение в степень: 6 2 =36 . Подставляем это значение в исходное выражение, оно примет вид (3+1)·2+36:3−7 .

          Дальше все понятно: выполняем действия в скобках, после чего остается выражение без скобок, в котором по порядку слева направо сначала выполняем умножение и деление, а затем – сложение и вычитание. Имеем (3+1)·2+36:3−7=4·2+36:3−7= 8+12−7=13 .

          Другие, в том числе и более сложные примеры выполнения действий в выражениях с корнями, степенями и т.п., Вы можете посмотреть в статье вычисление значений выражений.

          cleverstudents.ru

          Онлайн игры,тренажеры,презентации,уроки,энциклопедии,статьи

          Post navigation

          Примеры со скобками, урок с тренажерами.

          Мы рассмотрим в этой статье три варианта примеров:

          1. Примеры со скобками (действия сложения и вычитания)

          2. Примеры со скобками (сложение, вычитание, умножение, деление)

          3. Примеры, в которых много действий

          1 Примеры со скобками (действия сложения и вычитания)

          Рассмотрим три примера. В каждом из них порядок действий обозначен цифрами красного цвета:

          Мы видим, что порядок действий в каждом примере будет разный, хотя числа и знаки одинаковые. Это происходит потому, что во втором и третьем примере есть скобки.

        • Если в примере нет скобок , мы выполняем все действия по порядку, слева направо.
        • Если в примере есть скобки , то сначала мы выполняем действия в скобках, и лишь потом все остальные действия, начиная слева направо.
        • *Это правило для примеров без умножения и деления. Правила для примеров со скобками, включающих действия умножения и деления мы рассмотрим во второй части этой статьи.

          Чтобы не запутаться в примере со скобками, можно превратить его в обычный пример, без скобок. Для этого результат, полученный в скобках, записываем над скобками, далее переписываем весь пример, записывая вместо скобок этот результат, и далее выполняем все действия по порядку, слева направо:

          В несложных примерах можно все эти операции производить в уме. Главное — сначала выполнить действие в скобках и запомнить результат, а затем считать по порядку, слева направо.

          А теперь — тренажеры!

          1) Примеры со скобками в пределах до 20. Онлайн тренажер.

          2) Примеры со скобками в пределах до 100. Онлайн тренажер.

          3) Примеры со скобками. Тренажер №2

          4) Вставь пропущенное число — примеры со скобками. Тренажер

          2 Примеры со скобками (сложение, вычитание, умножение, деление)

          Теперь рассмотрим примеры, в которых кроме сложения и вычитания есть умножение и деление.

          Сначала рассмотрим примеры без скобок:

        • Если в примере нет скобок , сначала выполняем действия умножения и деления по порядку, слева направо. Затем — действия сложения и вычитания по порядку, слева направо.
        • Если в примере есть скобки , то сначала мы выполняем действия в скобках, затем умножение и деление, и затем — сложение и вычитание начиная слева направо.
        • Есть одна хитрость, как не запутаться при решении примеров на порядок действий. Если нет скобок, то выполняем действия умножения и деления, далее переписываем пример, записывая вместо этих действий полученные результаты. Затем выполняем сложение и вычитание по порядку:

          Если в примере есть скобки, то сначала нужно избавиться от скобок: переписать пример, записывая вместо скобок полученный в них результат. Затем нужно выделить мысленно части примера, разделенные знаками «+» и «-«, и посчитать каждую часть отдельно. Затем выполнить сложение и вычитание по порядку:

          3 Примеры, в которых много действий

          Если в примере много действий, то удобнее будет не расставлять порядок действий во всем примере, а выделить блоки, и решить каждый блок отдельно. Для этого находим свободные знаки «+» и «–» (свободные — значит не в скобках, на рисунке показаны стрелочками).

          Эти знаки и будут делить наш пример на блоки:

          Выполняя действия в каждом блоке не забываем про порядок действий, приведенный выше в статье. Решив каждый блок, выполняем действия сложения и вычитания по порядку.

          А теперь закрепляем решение примеров на порядок действий на тренажерах!

          1. Примеры со скобками в пределах чисел до 100, действия сложения, вычитания, умножения и деления. Онлайн тренажер.

          2. Тренажер по математике 2 — 3 класс «Расставь порядок действий (буквенные выражения).»

          3. Порядок действий (расставляем порядок и решаем примеры)

          Порядок действий в математике 4 класс

          Начальная школа подходит к концу, скоро ребёнок шагнёт в углубленный мир математики. Но уже в этот период школьник сталкивается с трудностями науки. Выполняя простое задание, ребёнок путается, теряется, что в результате приводит к отрицательной отметке за выполненную работу. Чтобы избежать подобных неприятностей, нужно при решении примеров, уметь ориентироваться в порядке, по которому нужно решать пример. Не верно распределив действия, ребёнок не правильно выполняет задание. В статье раскрываются основные правила решения примеров, содержащих в себе весь спектр математических вычислений, включая скобки. Порядок действий в математике 4 класс правила и примеры.

          Перед выполнением задания попросите своё чадо пронумеровать действия, которые он собирается выполнить. Если возникли затруднения – помогите.

          Некоторые правила, которые необходимо соблюдать при решении примеров без скобок:

          Если в задании необходимо выполнить ряд действий, нужно сначала выполнить деление или умножение, затем сложение. Все действия выполняются по ходу письма. В противном случае, результат решения будет не верным.

          Если в примере требуется выполнить сложение и вычитание, выполняем по порядку, слева направо.

          27-5+15=37 (при решении примера руководствуемся правилом. Сначала выполняем вычитание, затем – сложение).

          Научите ребёнка всегда планировать и нумеровать выполняемые действия.

          Ответы на каждое решённое действие записываются над примером. Так ребёнку гораздо легче будет ориентироваться в действиях.

          Рассмотрим ещё один вариант, где необходимо распределить действия по порядку:

          Как видим, при решении соблюдено правило, сначала ищем произведение, после — разность.

          Это простые примеры, при решении которых, необходима внимательность. Многие дети впадают в ступор при виде задания, в котором присутствует не только умножение и деление, но и скобки. У школьника, не знающего порядок выполнения действий, возникают вопросы, которые мешают выполнить задание.

          Как говорилось в правиле, сначала найдём произведение или частное, а потом всё остальное. Но тут же есть скобки! Как поступить в этом случае?

          Решение примеров со скобками

          Разберём конкретный пример:

        • При выполнении данного задания, сначала найдём значение выражения, заключённого в скобки.
        • Начать следует с умножения, далее – сложение.
        • После того, как выражение в скобках решено, приступаем к действиям вне их.
        • По правилам порядка действий, следующим шагом будет умножение.
        • Завершающим этапом станет вычитание.
        • Как видим на наглядном примере, все действия пронумерованы. Для закрепления темы предложите ребёнку решить самостоятельно несколько примеров:

          Порядок, по которому следует вычислять значение выражения уже расставлен. Ребёнку останется только выполнить непосредственно решение.

          Усложним задачу. Пусть ребёнок найдёт значение выражений самостоятельно.

          7*3-5*4+(20-19) 14+2*3-(13-9)
          17+2*5+(28-2) 5*3+15-(2-1*2)
          24-3*2-(56-4*3) 14+12-3*(21-7)

          Приучите ребёнка решать все задания в черновом варианте. В таком случае, у школьника будет возможность исправить не верное решение или помарки. В рабочей тетради исправления не допустимы. Выполняя самостоятельно задания, дети видят свои ошибки.

          Родители, в свою очередь, должны обратить внимание на ошибки, помочь ребёнку разобраться и исправить их. Не стоит нагружать мозг школьника большими объёмами заданий. Такими действиями вы отобьёте стремление ребёнка к знаниям. Во всём должно быть чувство меры.

          Делайте перерыв. Ребёнок должен отвлекаться и отдыхать от занятий. Главное помнить, что не все обладают математическим складом ума. Может из вашего ребёнка вырастет знаменитый философ.

          detskoerazvitie.info

          Урок по математике 2 класс Порядок действий в выражениях со скобками.

          Успейте воспользоваться скидками до 50% на курсы «Инфоурок»

          Цель: 1.

          2.

          3. Закрепить знание таблицы умножения и деления на 2 – 6, понятия делителя и

          4. Учить работать в парах с целью развития коммуникативных качеств.

          Оборудование * : + — (), геометрический материал.

          Раз, два – выше голова.

          Три, четыре – руки шире.

          Пять, шесть – всем присесть.

          Семь, восемь – лень отбросим.

          Но сначала придется узнать его название. Для этого нужно выполнить несколько заданий:

          6 + 6 + 6 … 6 * 4 6 * 4 + 6… 6 * 5 – 6 14 дм 5 см… 4 дм 5 см

          Пока мы вспоминали о порядке действий в выражениях, с замком происходили чудеса. Мы были только что у ворот, а теперь попали в коридор. Смотрите, дверь. А на ней замок. Откроем?

          1. Из числа 20 вычесть частное чисел 8 и 2.

          2. Разность чисел 20 и 8 разделить на 2.

          — Чем отличаются результаты?

          — Кто сможет назвать тему нашего урока?

          (на массажных ковриках)

          По дорожке, по дорожке

          Скачем мы на правой ножке,

          Скачем мы на левой ножке.

          По тропинке побежим,

          Наше предположение было полностью правильно7

          Где выполняются действия сначала, если в выражении есть скобки?

          Смотрите перед нами «живые примеры». Давайте «оживим» их.

          * : + — ().

          m – c * (a + d) + x

          k: b + (a – c) * t

          6. Работа в парах.

          Для их решения вам понадобиться геометрический материал.

          Учащиеся выполняют задания в парах. После выполнения проверка работы пар у доски.

          Что нового вы узнали?

          8. Домашнее задание.

          Тема: Порядок действий в выражениях со скобками.

          Цель: 1. Вывести правило порядка действий в выражениях со скобками, содержащих все

          4 арифметических действия,

          2. Формировать способность к практическому применению правила,

          4.Учить работать в парах с целью развития коммуникативных качеств.

          Оборудование : учебник, тетради, карточки со знаками действий * : + — (), геометрический материал.

          1 .Физминутка.

          Девять, десять – тихо сесть.

          2. Актуализация опорных знаний.

          Сегодня мы с вами отправляемся в очередное путешествие по стране Знаний городу математика. Нам предстоит посетить один дворец. Что-то я забыла его название. Но не будем расстраиваться, вы сами сможете мне подсказать его название. Пока я переживала, мы подошли к воротам дворца. Войдем?

          1. Сравните выражения:

          2. Расшифруй слово.

          3. Постановка проблемы. Открытие нового.

          Так как же называется дворец?

          А когда в математике мы говорим о порядке?

          Что вы уже знаете о порядке выполнения действий в выражениях?

          — Интересно, нам предлагают записать и решить выражения (учитель читает выражения, учащиеся записывают их и решают).

          20 – 8: 2

          (20 – 8) : 2

          Молодцы. А что интересного в этих выражениях?

          Посмотрите на выражения и их результаты.

          — Что общего в записи выражений?

          — Как вы думаете, почему получились разные результаты, ведь числа были одинаковые?

          Кто рискнет сформулировать правило выполнения действий в выражениях со скобками?

          Правильность этого ответа мы сможем проверить в другой комнате. Отправляемся туда.

          4. Физминутка.

          И по этой же дорожке

          До горы мы добежим.

          Стоп. Немножко отдохнем

          И опять пешком пойдем.

          5. Первичное закрепление изученного.

          Вот мы и пришли.

          Нам нужно решить еще два выражения, чтобы проверить правильность нашего предположения.

          6 * (33 – 25) 54: (6 + 3) 25 – 5 * (9 – 5) : 2

          Для проверки правильности предположения откроем учебники на стр. 33 и прочитаем правило.

          Как нужно выполнять действия после решения в скобках?

          На доске написаны буквенные выражения и лежат карточки со знаками действий * : + — (). Дети выходят к доске по одному, берут карточку с тем действием, которое нужно сделать сначала, потом выходит второй ученик и берет карточку со вторым действием и т. д.

          а + (а –в)

          а * (в +с) : d t

          m c * ( a + d ) + x

          k : b + ( a c ) * t

          (a – b) : t + d

          6. Работа в парах. Автономная некоммерческая организация Бюро судебных экспертиз Судебная экспертиза. Несудебная экспертиза Рецензия на экспертизу. Оценка Автономная некоммерческая организация «Бюро судебных экспертиз» в Москве – центр […]

        • Особенности бухгалтерского учета субсидий Государство стремится поддержать малое и среднее предпринимательство. Такая поддержка наиболее часто выражается в форме предоставления субсидий – безвозмездных выплат из […]
        • Жалоба на педиатра Жалоба на педиатра — официальный документ, устанавливающий требования пациента и описывающий суть возникновения таких требований. Согласно статье 4 Федерального закона «О порядке рассмотрения […]
        • Ходатайство об уменьшении размера исковых требований Один из видов уточнения иска — ходатайство об уменьшении размера исковых требований. Когда истец неправильно определил цену иска. Или ответчик частично исполнил […]
        • Черный рынок доллара в Киеве Валютный аукцион по покупке доллара в Киеве Внимание: администрация не несёт ответственности за содержание объявлений на валютном аукционе. Правила публикации объявлений на валютном […]

    Мы рассмотрим в этой статье три варианта примеров:

    1. Примеры со скобками (действия сложения и вычитания)

    2. Примеры со скобками (сложение, вычитание, умножение, деление)

    3. Примеры, в которых много действий

    1 Примеры со скобками (действия сложения и вычитания)

    Рассмотрим три примера. В каждом из них порядок действий обозначен цифрами красного цвета:

    Мы видим, что порядок действий в каждом примере будет разный, хотя числа и знаки одинаковые. Это происходит потому, что во втором и третьем примере есть скобки.

    *Это правило для примеров без умножения и деления. Правила для примеров со скобками, включающих действия умножения и деления мы рассмотрим во второй части этой статьи.

    Чтобы не запутаться в примере со скобками, можно превратить его в обычный пример, без скобок. Для этого результат, полученный в скобках, записываем над скобками, далее переписываем весь пример, записывая вместо скобок этот результат, и далее выполняем все действия по порядку, слева направо:

    В несложных примерах можно все эти операции производить в уме. Главное — сначала выполнить действие в скобках и запомнить результат, а затем считать по порядку, слева направо.

    А теперь — тренажеры!

    1) Примеры со скобками в пределах до 20. Онлайн тренажер.

    2) Примеры со скобками в пределах до 100. Онлайн тренажер.

    3) Примеры со скобками. Тренажер №2

    4) Вставь пропущенное число — примеры со скобками. Тренажер

    2 Примеры со скобками (сложение, вычитание, умножение, деление)

    Теперь рассмотрим примеры, в которых кроме сложения и вычитания есть умножение и деление.

    Сначала рассмотрим примеры без скобок:

    Есть одна хитрость, как не запутаться при решении примеров на порядок действий. Если нет скобок, то выполняем действия умножения и деления, далее переписываем пример, записывая вместо этих действий полученные результаты. Затем выполняем сложение и вычитание по порядку:

    Если в примере есть скобки, то сначала нужно избавиться от скобок: переписать пример, записывая вместо скобок полученный в них результат. Затем нужно выделить мысленно части примера, разделенные знаками «+» и «-«, и посчитать каждую часть отдельно. Затем выполнить сложение и вычитание по порядку:

    3 Примеры, в которых много действий

    Если в примере много действий, то удобнее будет не расставлять порядок действий во всем примере, а выделить блоки, и решить каждый блок отдельно. Для этого находим свободные знаки «+» и «–» (свободные — значит не в скобках, на рисунке показаны стрелочками).

    Эти знаки и будут делить наш пример на блоки:

    Выполняя действия в каждом блоке не забываем про порядок действий, приведенный выше в статье. Решив каждый блок, выполняем действия сложения и вычитания по порядку.

    А теперь закрепляем решение примеров на порядок действий на тренажерах!

    Если у вас не открываются игры или тренажёры, читайте .

    Видеоурок «Порядок выполнения действий» подробно поясняет важную тему математики — последовательность выполнения арифметических операций при решении выражения. В ходе видеоурока рассматривается, какой приоритет имеют различные математические операции, как это применяется в вычислении выражений, приводятся примеры для усвоения материала, обобщаются полученные знания в решении заданий, где имеются все рассмотренные операции. С помощью видеоурока учитель имеет возможность быстрее достичь целей урока, повысить его эффективность. Видео может применяться в качестве наглядного материала, сопровождающего объяснение учителя, а также в качестве самостоятельной части урока.

    В наглядном материале используются приемы, которые помогают лучше достичь понимания темы, а также запомнить важные правила. С помощью цвета и разного написания выделяются особенности и свойства операций, отмечаются особенности решения примеров. Анимационные эффекты помогают подавать последовательно учебный материал, а также обратить внимание учеников на важные моменты. Видео озвучено, поэтому дополняется комментариями учителя, помогающими ученику понять и запомнить тему.

    Видеоурок начинается с представления темы. Затем отмечается, что умножение, вычитание являются операциями первой ступени, операции умножения и деления названы операциями второй ступени. Данным определением нужно будет оперировать дальше, выведено на экран и выделено цветным крупным шрифтом. Затем представляются правила, составляющие порядок выполнения операций. Выводится первое правило порядка, которое указывает, что при отсутствии скобок в выражении, наличию действий одной ступени, данные действия необходимо производить по порядку. Во втором правиле порядка утверждается, что при наличии действий обеих ступеней и отсутствии скобок, производятся первыми операции второй ступени, потом производятся операции первой ступени. Третье правило устанавливает порядок выполнения операций, для выражений, включающих скобки. Отмечается, что в этом случае сначала производятся операции в скобках. Формулировки правил выделены цветным шрифтом и рекомендованы к запоминанию.

    Далее предлагается усвоить порядок выполнения операций, рассматривая примеры. Описывается решение выражения с содержанием только операций сложения, вычитания. Отмечаются основные особенности, которые влияют на порядок вычислений — отсутствуют скобки, присутствуют операции первой ступени. Ниже расписано по действиям, как выполняются вычисления, сначала вычитание, затем два раза сложение, а затем вычитание.

    Во втором примере 780:39·212:156·13 требуется вычислить выражение, выполняя действия согласно порядку. Отмечается, что в данном выражении содержатся исключительно операции второй ступени, без скобок. В данном примере все действия производятся строго слева направо. Ниже поочередно расписываются действия, постепенно подходя к ответу. В результате вычисления получается число 520.

    В третьем примере рассматривается решение примера, в котором есть операции обеих ступеней. Отмечается, что в данном выражении отсутствуют скобки, но есть действия обеих ступеней. Согласно порядку выполнения операций, производятся операции второй ступени, после этого — операции первой ступени. Ниже — по действиям расписывается решение, в котором выполняются сначала три операции — умножение, деление, еще одно деление. Затем с найденными значениями произведения и частных производятся операции первой ступени. В ходе решения фигурными скобками объединены действия каждой ступени для наглядности.

    В следующем примере содержатся скобки. Поэтому демонстрируется, что первые вычисления производятся над выражениями в скобках. После них производятся операции второй ступени, следом — первой.

    Далее представлено замечание о том, в каких случаях можно не записывать скобки при решении выражений. Замечено, что это возможно только в случае, когда устранение скобок не изменить порядок выполнения операций. Примером служит выражение со скобками (53-12)+14, которое содержит только операции первой ступени. Переписав 53-12+14 с устранением скобок, можно отметить, что порядок поиска значения не изменится — сначала выполняется вычитание 53-12=41, а затем сложение 41+14=55. Ниже отмечается, что менять порядок операций при нахождении решения выражения можно, используя свойства операций.

    В конце видеоурока изученный материал обобщается в выводе, что каждое выражение, требующее решения, задает определенную программу для вычисления, состоящую из команд. Пример такой программы представляется при описании решения сложного примера, представляющего собой частное (814+36·27) и (101-2052:38). Заданная программа содержит пункты: 1) найти произведение 36 с 27, 2) добавить к 814 найденную сумму, 3) поделить на 38 число 2052, 4) отнять из числа 101 результат деления 3 пункта, 5) поделить результат выполнения пункта 2 на результат пункта 4.

    В конце видеоурока представлен перечень вопросов, на которые предлагается ответить ученикам. В их числе умение отличить действия первой и второй ступеней, вопросы о порядке выполнения действий в выражениях с действиями одной ступени и разных ступеней, о порядке выполнения действий при наличии скобок в выражении.

    Видеоурок «Порядок выполнения действий» рекомендуется применять на традиционном школьном уроке для повышения эффективности урока. Также наглядный материал будет полезен для проведения дистанционного обучения. Если ученику необходимо дополнительное занятие для освоения темы или он изучает ее самостоятельно, видео может быть рекомендовано для самостоятельного изучения.

    Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

    Yandex.RTB R-A-339285-1

    В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

    Определение 1

    В случае выражений без скобок порядок действий определяется однозначно:

    1. Все действия выполняются слева направо.
    2. В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.

    Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

    Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

    Пример 1

    Условие: вычислите, сколько будет 7 − 3 + 6 .

    Решение

    В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

    7 − 3 + 6 = 4 + 6 = 10

    Ответ: 7 − 3 + 6 = 10 .

    Пример 2

    Условие: в каком порядке нужно выполнять вычисления в выражении 6: 2 · 8: 3 ?

    Решение

    Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

    Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

    Пример 3

    Условие: подсчитайте, сколько будет 17 − 5 · 6: 3 − 2 + 4: 2 .

    Решение

    Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30 , потом 30 разделить на 3 и получить 10 . После этого делим 4 на 2 , это 2 . Подставим найденные значения в исходное выражение:

    17 − 5 · 6: 3 − 2 + 4: 2 = 17 − 10 − 2 + 2

    Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

    17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

    Ответ: 17 − 5 · 6: 3 − 2 + 4: 2 = 7 .

    Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

    Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

    Что такое действия первой и второй ступени

    Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

    К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

    Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

    Определение 2

    В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

    Порядок вычислений в выражениях со скобками

    Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

    Определение 3

    Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

    Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

    Пример 4

    Условие: вычислите, сколько будет 5 + (7 − 2 · 3) · (6 − 4) : 2 .

    Решение

    В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7 − 2 · 3 . Здесь нам надо умножить 2 на 3 и вычесть результат из 7:

    7 − 2 · 3 = 7 − 6 = 1

    Считаем результат во вторых скобках. Там у нас всего одно действие: 6 − 4 = 2 .

    Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

    5 + (7 − 2 · 3) · (6 − 4) : 2 = 5 + 1 · 2: 2

    Начнем с умножения и деления, потом выполним вычитание и получим:

    5 + 1 · 2: 2 = 5 + 2: 2 = 5 + 1 = 6

    На этом вычисления можно закончить.

    Ответ: 5 + (7 − 2 · 3) · (6 − 4) : 2 = 6 .

    Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

    Пример 5

    Условие: вычислите, сколько будет 4 + (3 + 1 + 4 · (2 + 3)) .

    Решение

    У нас есть скобки в скобках. Начинаем с 3 + 1 + 4 · (2 + 3) , а именно с 2 + 3 . Это будет 5 . Значение надо будет подставить в выражение и подсчитать, что 3 + 1 + 4 · 5 . Мы помним, что сначала надо умножить, а потом сложить: 3 + 1 + 4 · 5 = 3 + 1 + 20 = 24 . Подставив найденные значения в исходное выражение, вычислим ответ: 4 + 24 = 28 .

    Ответ: 4 + (3 + 1 + 4 · (2 + 3)) = 28 .

    Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

    Допустим, нам надо найти, сколько будет (4 + (4 + (4 − 6: 2)) − 1) − 1 . Начинаем с выражения во внутренних скобках. Поскольку 4 − 6: 2 = 4 − 3 = 1 , исходное выражение можно записать как (4 + (4 + 1) − 1) − 1 . Снова обращаемся к внутренним скобкам: 4 + 1 = 5 . Мы пришли к выражению (4 + 5 − 1) − 1 . Считаем 4 + 5 − 1 = 8 и в итоге получаем разность 8 — 1 , результатом которой будет 7 .

    Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

    Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

    Разберем пример такого вычисления.

    Пример 6

    Условие: найдите, сколько будет (3 + 1) · 2 + 6 2: 3 − 7 .

    Решение

    У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 6 2 = 36 . Теперь подставим результат в выражение, после чего оно примет вид (3 + 1) · 2 + 36: 3 − 7 .

    (3 + 1) · 2 + 36: 3 − 7 = 4 · 2 + 36: 3 − 7 = 8 + 12 − 7 = 13

    Ответ: (3 + 1) · 2 + 6 2: 3 − 7 = 13 .

    В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Умножение

    Дата: 02.05.2009
    Автор: Коновалова Валентина Михайловна

    Предмет: Математика.
    Класс: 2.
    Тема: Умножение. 
    Цели урока:

    1. Формирование знания конкретного смысла умножения.
    2. Формирование первого представления о переместительном свойстве умножения и случаях умножения 0 и 1, на 0 и 1.
    3. Формирование когнитивных (познавательных) компетенций: умения анализировать, обобщать, отыскивать причины, выявлять закономерности.
    4. Формирование отношения сотрудничества между учителем и учениками.
    Тип урока: урок изучения нового материала (вводный). 
    Технологии:
    • проблемный диалог,
    • интенсификация обучения на основе схемных и знаковых моделей (блочное изучение материала),
    • развивающего обучения (ведущая роль теоретических знаний).
    Методы обучения:
    • словесные (беседа),
    • наглядные (опорные схемы),
    • практические (решение примеров и задач),
    • репродуктивные (на этапе обобщения),
    • индуктивные (от фактов к выводам на этапах составления опорных схем),
    • проблемно-поисковые (обсуждение задания с элементами повышенной трудности).
    Форма организации учебной деятельности: фронтальная, индивидуальная. 
    Оборудование:
    1. Таблица с названиями компонентов умножения,
    2. листики для опорного сигнала,
    3. раздаточный материал: задача.
    Ход урока:
    1. Организационный момент.
    2. Актуализация знаний.
    — Сегодня урок изучения нового материала. Повторим материал, который нам поможет.
    1. Сколько прямых линий на чертеже? Сколько точек пересечения?
    2. Чем похожи примеры? Чем отличаются? Какое выражение лишнее?
    4+4
    6+6+6
    3+3+3+3
    1+2+3+4+5
    — Одинаковые слагаемые в каждом выражении. Разное количество слагаемых. Лишнее – последнее выражение, т.к. в нём складываются разные числа.
    1. Решите задачу (письменно). В классе 3 ряда парт. В каждом ряду по 5 парт. Сколько всего парт в классе?
    Ученик комментирует решение, класс оценивает сигнальной карточкой.
    5+5+5=15(п.)
    — Что показывает число 5?
    — Сколько парт в одном ряду.
    — Сколько раз по 5 взяли? Почему?
    — 3 раза, т.к. рядов было 3.
    — Что показывает число 15? — Сколько всего парт.
    1. Создание проблемной ситуации.
    — Прочитайте задачу.
    В ателье шили форму для первоклассников. На каждую рубашку пришивали по 4 пуговицы. Сколько надо пришить пуговиц на 20 рубашек?
    — Что обозначает число 4? 20? Что надо узнать? Запишите решение.
    — В чём затруднение?
    — Получится очень длинная запись.
    — Сколько раз надо взять слагаемым число 4? (20 раз) 4+4+…+4
    1. Поиск решения.
    1. Постановка задачи.
    — Неудобно, значит надо найти короткий способ записи суммы одинаковых слагаемых.
    — Есть такое математическое действие, которое может заменить сложение. Как оно называется?
    — Умножение.
    1. Замена сложения умножением.
    — 4+4. Сколько раз по 4 взяли? Это можно записать так: 4*2.
    — А как сосчитать, если мы не знаем таблицы умножения? (4+4=8)
    Аналогично заменяем умножением 6+6+6 и 3+3+3+3 (два ученика у доски).
    — Почему нельзя заменить умножением сложение чисел в последнем примере?
    — Слагаемые – разные числа.
    — Все ли примеры на сложение можно заменить умножением?
    — Нет, только те, в которых слагаемые одинаковые числа.
    1. Постановка темы урока.
    — Какая же сегодня тема урока?
    — Умножение.
    — Запишите на листике. Умножение.
    1. Составление I блока опорной схемы.
    — Запишем сказанное в общем виде.
    — Как можно обозначить любое число? (латинской буквой). Обозначим первое число буквой а, второе число — буквой в.
    а*в=а+а+…+а (слагаемое а беру в раз).
    — Что же такое умножение?
    — Сложение одинаковых слагаемых.
    — Что показывает первое число а?
    — Какое число берём слагаемым.
    — Второе число в?
    — Сколько раз берём слагаемое.
    1. Работа с учебником.
    — Откройте учебник на с.40. Читаем: тема урока «Умножение».
    — Прочитайте объяснение (про себя, вслух читает один ученик).
    — Что нового об умножении узнали?
    — Знак умножения называется точкой.
    — Как по-другому можно прочитать выражения.
    — 4 умножить на 2 получится 8.
    — Прочитайте таким же способом.
    — 6 умножить на 3 получится 18.
    — 3 умножить на 4 получится 12.
     
    1. Знакомство с названиями компонентов умножения.
    — Компоненты сложения и вычитания имеют свои названия. Как же называются числа при умножении? (появляется табличка с названиями компонентов умножения).
    — Прочитайте наши выражения третьим способом.
    1. Первичное закрепление.
    — Как по-другому записать решение задачи про парты?
    5*3=15(п.)
    — Мы сложение заменили умножением. А теперь наоборот замените умножение сложением и вычислите, чему равно произведение.

    С обратной стороны доски:
    2*5 Ученик у доски. Сигнальная карточка.
    5*2 С места с комментированием. Сигнальная карточка.
    3*8 Решите самостоятельно и придумайте свои примеры на умножение.
    8*3 Взаимопроверка.

    — У кого получилось 24? Какие примеры вы придумали?

    1. Физминутка.
    Счёт через 2.
    На «раз» молча хлопок, на «два» молча руками ударяем по ногам, на «три» касаемся пальцами плеч и произносим слово «Три». Игра идёт до 30.
    1. Составление II блока опорной схемы.
    1. Выдвижение гипотезы.
    — Сравните каждую пару выражений: 2*5=10 и 5*2=10, 3*8=24 и 8*3=24. Что интересного заметили?
    — Множители – числа одинаковые, только поменялись местами, и произведения тоже одинаковые.
    — Какое же можно сделать предположение?
    — От перестановки множителей произведение не меняется.
    1. Проверка гипотезы.
    — 3*2 3*2
    — Обозначу первое слагаемое 3 тремя горизонтальными прямыми, второе слагаемое 2- двумя вертикальными прямыми (чертёж делается на листке бумаги). Сколько точек пересечения получилось? (6). Поверну листик. Теперь какое первое слагаемое? (2) Второе? (3). Количество точек пересечения изменилось? (Нет). Значит, верно наше предположение? (Да).
    1. Запись в схеме.
    — Как можно записать переместительное свойство умножения буквами?
    а*в=в*а

    1. Составление III блока опорной схемы.
    — Рассмотрим случаи умножения с 0 и 1. 1.
    — Какой пример на умножение показывает этот чертёж? 1*1=1 1*1=1 1*2=2 2*1=2 1*3=3 3*1=3
    — Используйте переместительное свойство умножения. Полученные примеры запишите во второй столбик.

    — Продолжите высказывание: « Если один множитель равен единице, то произведение равно … второму множителю».
    — Запишем это в общей форме:
    1*а=а
    а*1=а
    — Сколько горизонтальных линий на чертеже? (1). А вертикальных? (Нисколько, значит, 0). Сколько точек пересечения? (0).
    — Какой пример на умножение показывает чертёж?
    1*0=0
    0*1=0
    2*0=0
    0*2=0
    3*0=0
    0*3=0
    — Запишите примеры, используя переместительное свойство умножения?
    — Какой же вывод можно сделать?
    — Если один множитель равен нулю, то и произведение равно нулю.
    — Запишем это в общем виде:
    а*0 =
    0*а=
    1. Первичное закрепление.
    — Решите задачи.
    1. У жеребёнка 4 ноги. На каждой ноге по 1 копыту. Сколько всего копыт?
    1*4=4(к.)
    2. После обеда на столе осталось 3 тарелки. Ни на одной из них не было ни одной сосиски. Сколько всего сосисок на этих тарелках?
    0*3=0(с.)
    При проверке обратить внимание на первый множитель:
    — Что показывает первый множитель?
    1. Обобщение.
    — С каким новым математическим действием познакомились?
    — Что запомнили об умножении?
    1. Домашнее задание.
    — Дома выучить опорную схему, решить задачу про пуговицы.
    1. Рефлексия.
    — Какие чувства вызвало у вас действие умножение.
    Коллективное составление синквейна.
    Умножение
    Быстрое, сильное
    Ускоряет, считает, решает
    Заменяет сложение
    Здорово (трудно, легко, интересно).

    Самоанализ урока.
    Первый этап.
    • общее впечатление от урока: оценка, настроение, всё ли задуманное выполнено
    • удовлетворён ли работой учеников, какова дисциплина на уроке
    Второй этап.
    • тема урока
    • обучающие задачи
    • какие компетенции вырабатывались
    • тип урока
    • элементы каких образовательных технологий использовал
    • какими методами обучения пользовался
    • формы работы
    Третий этап.
    • достигнуты ли на уроке поставленные задачи
    • оптимально ли протекал учебный процесс
    • целенаправленность обучения, воспитания, развития учеников
    • формирование познавательного интереса школьников
    • соблюдалось ли на уроке требование научной организации труда (экономия времени, чёткость организации рабочего места учителя и учащихся, рациональность затраченного времени и используемых приёмов)
    • как работали учащиеся на уроке (активность, работоспособность, мера их занятости, внимание, отношение к делу, ответственность, самостоятельность)
    • удалось ли установить контакт, благоприятен ли психологический микроклимат, не было ли безразличных учеников • что надо исправить, изменить, дополнить на следующем уроке.
     
    Блочное изучение темы «Умножение»
    (Математика. Моро М.И. Учебник для 2 класса, часть 2, с.40-49)
    1 урок – изучение теории, создание опорного сигнала, первичное закрепление.
    2 урок – воспроизведение конспекта в письменной и устной форме, закрепление.
    3-10 уроки – устное проговаривание, тренировочные упражнения, контроль и взаимоконтроль.
    11 урок – контрольная работа.
    12 урок – работа над ошибками.
    Литература:
    1. «Технология интенсификации обучения на основе схемных и знаковых моделей учебного материала в начальных классах». (http://festival.1september.ru/2005-2006/index.php?numb.artic=310668)
    2. Приём изучения умножения способом пересечения прямых линий. (Казакова М.А. «К вопросу об изучении умножения в начальном курсе математики». Жур. «Начальная школа» №8 2006г., с.68)

    Урок «Порядок действий в примерах без скобок»

    Урок математики в 4 классе

    Тема. Порядок действий в примерах без скобок.

    Цель. Формирование умения соблюдать порядок действий в примерах без скобок.

    Задачи:

    — закреплять знания таблицы умножения и деления,

    — закреплять умения соблюдать порядок действий при решении примеров первой и второй ступени без скобок;

    — развитие памяти, мышления, зрительного восприятия;

    — воспитание активности на уроке математики.

    I. Организационный момент.

    Проверка готовности к уроку.

    — Ребята, скажите, какой по счету урок?

    — Как называется урок?

    — Чему мы учимся на уроках математики?

    II. Актуализация опорных знаний.

    — Начнем нашу работу с устного счета.

    1.Устный счет.

    Какая геометрическая фигура лишняя?

    — Посчитать по 2 до 30.

    — Посчитать по 5 до 50

    — Увеличить 33 на 7. (40)

    — Уменьши 42 на 6 (36)

    — К какому числу нужно прибавить 10, чтобы получилось 18?(8)

    — На сколько нужно разделить 27, чтобы получилось 3? (9)

    — Найти произведение чисел 5 и 7 (35)

    — У Риты 12 шариков, а у Вовы 7 шариков. На сколько у Риты больше шариков? (на 5 шариков)

    2. Сообщение темы урока

    -В жизни мы по­сто­ян­но вы­пол­ня­ем ка­кие-ли­бо дей­ствия: гу­ля­ем, учим­ся, чи­та­ем, пишем, счи­та­ем, улы­ба­ем­ся, ссо­рим­ся и ми­рим­ся. Эти дей­ствия мы вы­пол­ня­ем в раз­ном по­ряд­ке. Ино­гда их можно по­ме­нять ме­ста­ми, а ино­гда нет. На­при­мер, со­би­ра­ясь утром в школу, можно сна­ча­ла сде­лать за­ряд­ку, затем за­пра­вить по­стель, а можно на­о­бо­рот. Но нель­зя сна­ча­ла уйти в школу, а потом на­деть одеж­ду.

    -А в ма­те­ма­ти­ке обя­за­тель­но ли вы­пол­нять ариф­ме­ти­че­ские дей­ствия в опре­де­лен­ном по­ряд­ке?

    -Да­вай­те про­ве­рим

    -Срав­ним вы­ра­же­ния:
    8-3+4 и 8-3+4

    -Посмотрите. Что необычного в этих примерах?

    — Давайте вы­пол­ним дей­ствия в одном вы­ра­же­ния слева на­пра­во, а в дру­гом спра­ва на­ле­во. (Чис­ла­ми можно про­ста­вить по­ря­док вы­пол­не­ния дей­ствий.)

    -В пер­вом вы­ра­же­нии мы сна­ча­ла вы­пол­ним дей­ствие вы­чи­та­ния, а затем к ре­зуль­та­ту при­ба­вим число 4.

    8-3+4=9

    Во вто­ром вы­ра­же­нии сна­ча­ла най­дем зна­че­ние суммы, а потом из 8 вы­чтем по­лу­чен­ный ре­зуль­тат 7.

    8-3+4=1

    -Есть какие-то отличия теперь?

    -А почему получились разные ответы? (в разном порядке выполняли действия)

    — Как вы думаете, как называется тема нашего урока?

    — Тема нашего урока «порядок действий в выражениях без скобок».

    Запись в тетради числа, темы урока.

    III. Работа по теме урока.

    — Ребята, скажите, а что помогает нам определить правильный порядок действий в примерах? (скобки).

    — Что же делать, если скобок нет?

    Давайте рассмотрим вы­ра­же­ния

    38-10+6 3х4:2

    — Какие два действия вы видите в первом примере? Во втором?

    — Скажите, к какой ступени относятся действия в первом примере? (к 1) Во втором? (ко 2)

    — Как решаются выражения, где встречаются действия одной ступени? (по порядку)

    -Рассмотрим такое выражение 18+2х2=

    — Как будем действовать? (сначала х :, затем + и -)

    Запишем эти выражения в тетрадь и решим их.

    IV. Физкультминутка.

    V. Закрепление

    1. Работа по учебнику с. 55 №31 1 ст. – Карина 2 ст. — Витя

    2.Работа на карточках.

    72-8:2= 84-12:2=

    81-9:3= 73-14:2=

    VI. Итог урока. Оценивание

    VII. Рефлексия

    — Ребята, вы прекрасно работали на уроке, молодцы.

    -Что нового узнали на уроке?

    -Чем занимались?

    Умножение / Справочник по математике для начальной школы

    1. Главная
    2. Справочники
    3. Справочник по математике для начальной школы
    4. Умножение

    В этом разделе познакомимся с умножением и узнаем, что сложение одинаковых слагаемых можно заменить умножением.

    В математике существует знак для умножения — это точка посередине строки между числами, которые нужно перемножить.

    Например, 6 + 6 + 6 + 6 = 24 можно записать по-другому: 6 • 4 = 24


    Смысл действия умножения состоит в том, что при умножении находится сумма одинаковых слагаемых.

    Первое число при умножении показывает, какое слагаемое повторяют несколько раз.

    Второе число при умножении показывает, сколько раз повторяют это слагаемое.

    Результат умножения показывает, какое число получается.

    6 • 4 значит, что число 6 повторяют 4 раза: 6 + 6 + 6 + 6 = 24

    6 — первый множитель

    4 — второй множитель

    24 — произведение


    Числа при умножении

    Первый множитель

    Второй множитель

    Результат умножения, или Произведение


    Чтение числовых выражений

    6 • 4 = 24

    Этот пример можно прочитать по-разному.

    • 6 умножить на 4 равняется 24.
    • 6 увеличить в 4 раза – получится 24.
    • Первый множитель – 6, второй множитель – 4, произведение – 24.
    • Произведение 6 и 4 равно 24.

    Умножение на 1

    4 • 1 = 4, потому что это значит, что число 4 повторяют только 1 раз.

    23 • 1 = 23, потому что это значит, что число 23 повторяют только 1 раз.


    Умножение на 0

    8 • 0 = 0, потому что это значит, что число 8 повторяют 0 раз.

    26 • 0 = 0, потому что это значит, что число 26 повторяют 0 раз.


    Умножение на 10

    8 • 10 = 80, потому что число 8 повторяют 10 раз.

    15 • 10 = 150, потому что число 15 повторяют 10 раз.


    Связь деления и умножения

    8 • 3 = 24, потому что 8 повторяют 3 раза.

    24 : 3 = 8, потому что в 24 по 3 содержится 8 раз.

    24 : 8 = 3, потому что в 24 по 8 содержится 3 раза.


    В несколько раз больше
    Решим задачу:

    В магазине было 2 лисички, а котят в 4 раза больше. Сколько было котят?

    Это значит, что котят было 4 раза по 2.

    2 + 2 + 2 + 2 = 4 (к.)

    Заменяем сложение умножением и получаем: 

    2 • 4 = 8 (к.)

    Вывод: Если в задаче есть слова «в … раз больше», то задача решается умножением.
    Во сколько раз больше? Во сколько раз меньше?

    Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?

    Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?

    8 : 2 = 4 (раза)

    Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.


    Поделись с друзьями в социальных сетях:

    Советуем посмотреть:

    Табличное умножение

    Внетабличное умножение

    Умножение суммы на число

    Умножение на однозначное число в столбик

    Умножение на числа, оканчивающиеся нулями

    Свойства умножения

    Правило встречается в следующих упражнениях:

    2 класс

    Страница 55. Вариант 2. № 2, Моро, Волкова, Проверочные работы

    Страница 57, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 60, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 76, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 77, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 94, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 44, Моро, Волкова, Рабочая тетрадь, часть 2

    Страница 50, Моро, Волкова, Рабочая тетрадь, часть 2

    Страница 55, Моро, Волкова, Рабочая тетрадь, часть 2

    Страница 65, Моро, Волкова, Рабочая тетрадь, часть 2

    3 класс

    Страница 32, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 33, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 34, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 54, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 77, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 23, Моро, Волкова, Рабочая тетрадь, часть 1

    Страница 5, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 48, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 51, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 77, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    4 класс

    Страница 11, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 29, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 93, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

    Страница 4, Моро, Волкова, Рабочая тетрадь, часть 1

    Страница 13. Вариант 2. Тест 1, Моро, Волкова, Проверочные работы

    Страница 13, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 66, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 75, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 85, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    Страница 92, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

    5 класс

    Номер 36, Мерзляк, Полонский, Якир, Учебник


    © budu5.com, 2021

    Пользовательское соглашение

    Copyright

    Порядок арифметических операций в MS Excel

    Вообще, тема этой статьи относится скорее к базовой школьной программе арифметики. В самом деле – то что умножение имеет приоритет перед суммированием, вроде бы должны знать все… Но, практика показывает, даже это знание не мешает тем, к то с MS Excel знаком поверхностно, допускать досадные ошибки в вычислениях.

    Простейший пример на который любят ссылаться авторы учебников: почему один и тот же пример 7+5х3 при расчете на калькуляторе дает результат “36”, а при расчете в Excel, “22”?

    На самом деле, как это не странно, и тот и другой результат правильный, просто нужно понимать как ведется счет. Калькулятор решает пример в порядке ввода данных и пошагово, то есть сначала мы вводим 7+5 и получаем промежуточный результат 13 (1 шаг), а ввод следующего арифметического знака (умножение), калькулятор считает уже за второй шаг и умножает промежуточный результат на следующее число, т.е. 12х3. Вот тебе и 36.

    Иногда строгий арифметический порядок при вычисления формул в MS Excel дает совсем не тот ответ, что мы ждем

    MS Excel решает тот же пример по всем правилам математики и не разделяя пример на шаги-действия: сперва идет умножение 5х3, а затем сложение: 15+7=22.

    Приоритет расчета внутри excel-формулы всегда происходят в следующем порядке:

    1. Круглые скобки
    2. Возведение в степень
    3. Умножение
    4. Деление
    5. Сложение
    6. Вычитание.

    Другими словами, если бы решили посчитать тот же самый пример в экселе “по-калькуляторному”, формула выглядела бы как (7+5)х3. В этом случае сперва будет выполнено действие в скобках, и только потом следующее действие в порядке приоритета.

    К счастью, с помощью скобок мы можем задавать порядок и приоритет математических excel-операций вручную.

    Удобнее всего сперва записывать “сложные” формулы состоящие из нескольких частей сперва целиком, а затем, расставить скобки вручную перемещаясь по формуле с помощью стрелок на клавиатуре. Особенно внимательно следите за тем, чтобы скобки всегда были парными, иначе MS Excel выдаст сообщение об ошибке.

    При работе со скобками в MS Excel главное запомнить простое правило: количество скобок всегда должно быть четным

    Пример решения “сложной” формулы со скобками в MS Excel:

    В моем примере вы можете видеть формулу: =((25*3)-(52+5))/12. Расчет результата в ней MS Excel проводит в следующем порядке:

    1. Сначала вычисляются части формулы внутри общих скобок, в свою очередь также стоящие в скобках: 25*3=75 и 52+5=57
    2. Затем из первого полученного результата вычитается второй полученный результат: 75-57=18
    3. Скобки наконец кончились, поэтому теперь можно выполнить последнее действие, т.е. деление: 18/12=1,5

    Сложение и вычитание степеней ⬅️

    Что такое степень числа

    В учебниках по математике можно встретить такое определение: 

    «Степенью n числа а является произведение множителей величиной а n-раз подряд»

    где

    a — основание степени

    n — показатель степени

    Соответственно, an= a·a·a·a…·a

    Читается такое выражение, как a в степени n.

    Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить данное число (основание степени) на само себя. А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например число 2, то решается она довольно просто:

    2 — основание степени

    3 — показатель степени

    Действия, конечно, можно выполнять и в онлайн калькуляторе — вот несколько подходящих:

    Таблица степеней

    Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

    Число

    Вторая степень

    Третья степень

    1

    1

    1

    2

    4

    8

    3

    9

    27

    4

    16

    64

    5

    25

    125

    6

    36

    216

    7

    49

    343

    8

    64

    512

    9

    81

    729

    10

    100

    1000

    Свойства степеней: когда складывать, а когда вычитать

    Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — давайте их рассмотрим.

     

    Свойство 1: произведение степеней

    При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:

    a — основание степени

    m, n — показатели степени, любые натуральные числа.

    Свойство 2: частное степеней

    Когда мы делим степени с одинаковыми основаниями, то основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.

    a — любое число, не равное нулю

    m, n — любые натуральные числа такие, что m > n

    Свойство 3: возведение степени в квадрат

    Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.

    a — основание степени (не равное нулю)

    m, n — показатели степени, натуральное число

    Свойство 4: степень возведения

    При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

    a, b — основание степени (не равное нулю)

    n — показатели степени, натуральное число

    Записывайся на онлайн курсы по математике для учеников с 1 по 11 классы!

    Свойство 5: степень частного

    Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

    a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0, 

    n — показатель степени, натуральное число

    Сложение и вычитание степеней

    Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания. Примеры:

    • 23+ 34= 8 + 81= 89
    • 63— 33= 216 — 27 = 189

    И еще несколько правил:

    • при наличии скобок — начинать вычисления нужно внутри них
    • только потом возведение производим в степень
    • затем выполняем остальные действия: сначала умножение и деление
    • после — сложение и вычитание

    Сложение степеней с разными показателями

    В таком случае действуем согласно общему правилу: сначала выполняем возведение в степень каждого числа, затем — производим сложение.

    Сложение степеней с разными основаниями

    В целом, это ничем не отличается от предыдущего пункта. Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим сложение.

    • 34+ 54=81 + 625 = 706
    • 14+ 72= 1+ 49 = 50

    Как складывать числа с одинаковыми степенями

    Точно также, как и в предыдущем примере. Если степени одинаковые, а основания разные, то нельзя сложить основания и затем эту сумму возводить в степень.
    Сначала возводим каждое число в степень и затем выполняем сложение.

    В уравнениях это будет происходить немного иначе. Если показатель и основание степени одинаковые (тогда это называется переменная, a2, например) — их коэффициенты можно складывать. Коэффициент — это число перед переменной a2.

    2, 3, 5 — коэффициенты

    a2  — переменная

    Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

    Вычитание степеней с одинаковым основанием

    Здесь принцип тот же, что и со сложением: возводим в степень числа и только потом вычитаем их.

    Вычитание степеней с разными основаниями

    Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим вычитание.

    • 54— 44= 625 — 256 = 369
    • 74— 32= 2401 — 9 = 2392

    Вычитание чисел с одинаковыми степенями

    Все точно также, как и со сложением. Если степени одинаковые, а основания разные, то нельзя вычесть основания и затем эту разницу возводить в степень. Сначала возводим каждое число в степень и затем выполняем вычитание.

    И та же история с коэффициентами: если показатель степени и основание степени одинаковые (тогда это называется переменная, a2) — их коэффициенты можно вычитать. Коэффициент — это число перед переменной a2.

    6, 3, 2 — коэффициенты

    a2  — переменная

    Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

    Подготовиться к сложной контрольной ребенку помогут в детской онлайн-школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. Запишите вашего ребенка на бесплатный вводный урок математики и начните заниматься ей с удовольствием уже завтра.

    Порядок операций — Простая английская Википедия, бесплатная энциклопедия

    Порядок операций — это математический и алгебраический набор правил. Он используется для оценки (решения) и упрощения выражений и уравнений. Порядок операций — это порядок выполнения различных математических операций. Стандартные математические операции: сложение ( + ), вычитание (), умножение ( * или × ), деление (/), скобки (символы группировки, используемые для обозначения порядка операций, например ( ), [] и {} [1] ) и возведение в степень ( ^ n или n , также называемые порядками или индексами). [2] [3]

    Математики пришли к соглашению о правильном порядке использования операций, и очень важно, чтобы они знали эти правила. Когда люди решают проблему с помощью более чем одной операции, им необходимо знать правильный порядок, чтобы правильно решить проблему. В противном случае ответ будет неверным.

    Следуйте всем правилам в следующем порядке слева направо в уравнении.

    Скобки и указатели [изменить | изменить источник]

    Используйте операции в квадратных скобках и решайте любые индексы.При решении уравнения всегда следует сначала решать квадратные скобки.

    Пример :

    2 * 4 + (9-8) + 3
    2 * 4 + (9-8) + 3
    2 * 4 + 1 + 3
    2 * 4 + 1 + 3
    8 + 1 + 3
    8 + 1 + 3
    9 + 3
    = 12
    Показатели степени [изменение | изменить источник]

    Увидев показатель степени, сначала решите его после решения скобок. (5 3 = 5 * 5 * 5 = 125)

    Умножение и деление [изменить | изменить источник]

    Решите любое умножение и деление в задаче.Обратите внимание, что умножение не предшествует делению; это частая ошибка. Оба решаются слева направо по мере их появления.

    Пример :

    5 * 4 — 9/3
    5 * 4 — 9/3
    20–9 / 3
    20 — 9/3
    20–3
    = 17

    Сложение и вычитание [изменить | изменить источник]

    Наконец, решите любое сложение или вычитание.

    Два примера всех правил [изменить | изменить источник]

    Пример первый [изменение | изменить источник]
    (1 + 8) * (4-1) + 16/2 3
    (1 + 8) * (4-1) + 16/2 3
    9 * (4-1) + 16/2 3
    9 * 3 + 16/ 2 3
    9 * 3 + 16/8
    9 * 3 + 16/8
    27 + 16/8
    27 + 2
    = 29
    Пример второй [изменить | изменить источник]
    (7 + 3) * (6 — 3) + 216/3 3
    (7 + 3) * (6 — 3) + 216/3 3
    10 * (6 — 3) + 216/3 3
    10 * 3 + 216/ 3 3
    10 * 3 + 216/27
    10 * 3 + 216/27
    30 + 216/27
    30 + 8
    = 38

    Акронимы для порядка стандартных операций — GEMDAS или PEMDAS, что означает группирование / скобки, экспонента, умножение и деление и сложение и вычитание. [3]

    При решении 8-7 + 5 некоторые люди говорят, что 7 + 5 должно иметь приоритет, но это неверно. Вместо этого, чтобы найти правильный ответ, нужно смотреть слева направо. Это правило также относится к умножению и делению.

    1. «Сборник математических символов». Математическое хранилище . 2020-03-01. Проверено 22 августа 2020.
    2. Weisstein, Eric W. Precedence. mathworld.wolfram.com . Проверено 22 августа 2020.
    3. 3,0 3,1 Стапель, Элизабет. «Порядок действий: ПЕМДАС». Purplemath . Проверено 22 августа 2020.

    Как решать комбинированные операции

    В этом посте мы узнаем, в каком порядке нужно выполнять комбинированные операции: сложение , вычитание, умножение и деление . Комбинированные операции нельзя выполнять произвольно, необходимо соблюдать порядок.

    • Шаг 1. Выполните операции, указанные в скобках.

    Например: 3 х (2 + 4).

    Сначала мы выполняем операцию внутри скобок: 2 + 4 = 6.

    Затем выполняем операцию: 3 x 6 = 18.

    • Шаг 2: выполняйте умножение и деление всегда слева направо.

    Например: 24 ÷ 6 x 2.

    Сначала мы выполняем деление, потому что оно левее умножения: 24 ÷ 6 = 4.

    Затем мы производим умножение: 4 x 2 = 8 .

    • Шаг 3. Наконец, выполните сложение и вычитание.

    Например: 2 + 3 x 5.

    Сначала производим умножение: 3 x 5 = 15.

    Затем берем сумму: 2 + 15 = 17.

    Пример №1 комбинированных операций:

    6 + (8-3) x 2


    Сначала завершаем операцию в скобках: 8 — 3 = 5.

    Отсюда имеем: 6 + 5 x 2.

    Теперь произведем умножение: 5 х 2 = 10.
    И, наконец, сложение: 6 + 10 = 16.

    Пример № 2 комбинированных операций:

    21 ÷ 3 + 7 x 4

    Первая операция, которая должна быть завершена, указана в скобках, но в данном случае их нет.
    Следующее, что нужно сделать, это умножение и деление: 21/3 = 7, а на другом 7 x 4 = 28
    Теперь у нас осталось только сложение: 7 + 28 = 35

    Щелкните здесь, если хотите узнать о приемах решения комбинированных операций! Или войдите в Smartick и продолжайте изучать математику.

    Подробнее:

    Команда по созданию контента.
    Многопрофильная и многонациональная команда, состоящая из математиков, учителей, профессоров и других специалистов в области образования!
    Они стремятся создать максимально возможное математическое содержание.

    Арифметические операции — Порядок работы — Имеет ли значение порядок ..

    Мы можем придумать любое правило, какое захотим. Пока мы в этом последовательны.

    Так что такое 5 + 4×3 + 2?

    Можно составить такое правило: 1) Вы всегда делаете это строго слева направо

    Итак, 5 + 4×3 + 2 = 9×3 + 2 = 27 + 2 = 29.

    Или мы могли бы составить правило, что: 2) Вы всегда сначала делаете сложение

    Итак, 5 + 4×3 + 2 = 9×5 = 45.

    Или мы могли бы составить такое правило: 3) Вы всегда сначала выполняете умножение

    Итак, 5 + 4×3 + 2 = 5 + 12 + 2 = 19.

    Или мы могли бы составить такое правило: 4) Вы всегда идете справа налево

    Итак, 5 + 4×3 + 2 = 5 + 4×5 = 5 + 20 = 25.

    Итак, какое правило лучше?

    Ну, по многим причинам 3 лучше, а 1 и 4 — наихудшие.Но на самом деле мы, , могли бы обойтись с любым из них, если выберем тот, которого мы придерживаемся.

    По многим причинам «Сначала умножение, потом сложение».

    А как насчет скобок и скобок? Итак, вся причина, по которой у нас, , скобок, а скобки к , говорят нам, что нужно делать что-то в первую очередь. Они используются именно тогда, когда обычные правила — это , а не , что мы хотим сделать, поэтому мы добавляем их, чтобы указать, что что-то должно быть сделано в первую очередь.

    Серьезно, если бы у нас было правило, что мы должны делать скобки на последние , вы можете видеть, что это не сработает. Как мы могли выразить «3 раза больше, чем 4 плюс 5», если у нас есть способ сказать «сначала сложите 4 и 5». «Сначала сложите 4 и 5» — это то, что 3x (4 + 5) означает .

    Так почему мы сначала делаем умножение, а затем сложение? Или, если на то пошло, сначала силы, затем умножение и сложение?

    Ну думаю это из-за «группировки». Когда мы добавляем вещи, мы группируем их, а не наборы единиц.3 + 5 действительно означает «3 единицы, сгруппированные с 5, составляют 8 единиц». Когда мы множимся, мы группируемся по большим факторам, а не по маленьким единицам. 3×4 + 5×6 означает «у нас есть набор из 3 четверок и набор из 5 шестерок; это объединяет, и у нас есть 12 и 30, и мы объединяем их по единицам, чтобы получить 32». Я не знаю. Мне кажется, что это наиболее естественный способ сделать это. По-моему все равно ….

    Итак, 3x (4 + 5) означает «хорошо, сначала мы специально группируем 4 и 5, а затем берем набор из 3 результатов из 9. Три 9 — это 27».

    И силы находятся в еще большей группировке.

    Хорошо … так что насчет вычитания и деления.

    Ну, сложение / вычитание — наоборот. 5 — 3 значит? + 3 = 5. Или, более алгебраически, 5 + [-3], где [-3] — это число, которое убирает 3. По сути, вычитание и сложение — это один и тот же уровень группировки. На самом деле не имеет значения, что вы сделаете в первую очередь. Я думаю, что мнемоника BODMAS не работает, так как с 3-4 +5 вы определенно не хотите, чтобы сложили 4 + 5, чтобы получить 3-4 + 5 = 3-7 перед вычитанием.Вы действительно хотите подумать о том, чтобы вычитание складывалось с отрицательными числами 3–4 + 5 равно 3 + [-4] + 5, а теперь это просто сложение в любом порядке.

    И аналогично деление, $ 8 \ div 4 $, является обратным умножению. $ 8 \ div 4 = 8 \ times \ frac 14 $.

    Итак … нет. Различие между сложением и вычитанием не так важно, как все это. НО действительно будьте осторожны. Если вы станете более наглым, будут случаться ошибки.

    В любом случае, BODMAS — это просто вспомогательное средство памяти. На самом деле это не математическое правило.

    Как решать уравнения с порядком операций «Math :: WonderHowTo

    В математике порядок операций определяет приоритет, в котором решаются сложные уравнения. Наивысший приоритет — скобки, затем показатели, затем умножение и деление и, наконец, сложение и вычитание (PEMDAS). В этом видеоуроке демонстрируется порядок работы с различными примерами и объясняется соответствующая методология. От Рамануджана до соавтора математики Готфрида Лейбница многие из лучших и ярчайших математических умов мира принадлежали к самовоспитателям.А благодаря Интернету стало проще, чем когда-либо, пойти по их стопам (или просто закончить домашнее задание или подготовиться к следующему серьезному испытанию).

    Пожалуйста, включите JavaScript, чтобы посмотреть это видео. Пожалуйста, включите JavaScript, чтобы посмотреть это видео. (1) Часть 1 из 2 — Как решать уравнения с порядком операций, (2) Часть 2 из 2 — Как решать уравнения с порядком операций

    Хотите освоить Microsoft Excel и взять свою работу из- перспективы домашней работы на новый уровень? Начните свою карьеру с нашего пакета обучения Microsoft Excel Premium A-to-Z из нового магазина гаджетов и получите пожизненный доступ к более чем 40 часам инструкций от базового до расширенного по функциям, формулам, инструментам и многому другому.

    Купить сейчас (скидка 97%)>

    Другие выгодные предложения, которые стоит проверить:

    Порядок операций и PEMDAS

    Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или больше ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее то информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

    Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

    Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

    Чтобы отправить уведомление, выполните следующие действия:

    Вы должны включить следующее:

    Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

    Отправьте жалобу нашему уполномоченному агенту по адресу:

    Чарльз Кон Varsity Tutors LLC
    101 S. Hanley Rd, Suite 300
    St. Louis, MO 63105

    Или заполните форму ниже:

    ключевых слов для математических операций

      • Выражение переводится как 7 + −4.

    Напоминание: Ключевое слово AND переводится как «плюс», потому что ведущее ключевое слово — SUM OF.С другими ведущими ключевыми словами (обсуждаемыми в следующих разделах) И может означать другие вещи. Также обратите внимание, что вы не упрощаете выражение и получаете «3» за ответ, потому что вы просто переводите слова в символы, а не выполняете математические вычисления.

    Два других ключевых слова в списке дополнительных ключевых слов, PLUS и INCREASED BY, могут быть правильно переведены с помощью стратегии прямого перевода . В стратегии прямого перевода вы переводите каждое слово в соответствующий ему алгебраический символ, по одному, в том же порядке, в котором написано, как показано в Примере 4.

    Пример 4: Переведите следующее: число увеличилось на двадцать четыре

    • Выражение переводится как x + 24.

    Некоторые дополнительные ключевые слова, такие как GAIN, MORE, INCREASE OF и RAISE, обычно встречаются в задачах истории, как в примере 5.

    Пример 5: Переведите следующую сюжетную задачу в математическое выражение о весе полузащитника: Защитный полузащитник весил двести двадцать два фунта в начале весенней тренировки.После четырех недель тренировок с командой он набрал 17 фунтов.

    • Выражение переводится как 222 + 17.

    Примечание: Не все числа, упомянутые в проблеме со словами, должны быть включены в математическое выражение. Число «четыре» — это просто интересный факт, но это не информация, необходимая для того, чтобы написать выражение о весе полузащитника.

    Вам также может быть интересно, почему ответ — не 239 фунтов. Это потому, что вопрос просит вас перевести проблему рассказа в математическое выражение, а не оценить выражение.

    Пример 6: Переведите следующую словесную задачу в математическое выражение о текущей почасовой оплате труда кассира: Кассир в продуктовом магазине на углу зарабатывал 6,25 доллара в час. Он получил прибавку в 25 центов в час.

    • Выражение переводится как 6,25 + 0,25.

    Примечание: Почасовая оплата указана в долларах, а надбавка — в центах. Каждый раз, когда вы складываете два числа, которые содержат единиц , убедитесь, что оба числа измеряются в одинаковых единицах; в противном случае преобразуйте одно из чисел в те же единицы, что и другое.Если оба числа измеряются одними и теми же единицами, это называется однородными единицами. В этом примере вы конвертируете его прибавку, 25 центов, в 0,25 доллара, потому что его почасовая оплата измеряется в долларах, а не в центах, поэтому прибавка также должна быть в долларах.

    Ключевые слова вычитания также включают ведущие ключевые слова, ключевые слова, которые можно переводить по одному слову за раз, и ключевые слова, которые встречаются в задачах рассказа. Взгляните на следующий список ключевых слов вычитания:

    • РАЗНИЦА МЕЖДУ _____ И _____

    Одно ключевое слово вычитания (DIFFERENCE BETWEEN) — это двухчастное выражение, которое начинается с ведущего ключевого слова, определяющего соответствующее AND.Вы можете использовать те же методы подчеркивания и обводки ключевых слов, показанные в предыдущем разделе, для перевода этих выражений.

    Пример 7: Переведите следующее: разница между четырьмя и шестью

    Вот как вы переводите Пример 7:

    Как использовать BIDMAS для решения уравнений

    BIDMAS

    • Скобки относится к любой части уравнения, заключенной в скобки. Они всегда должны быть заполнены в первую очередь.

    • Индексы просто означает мощность. Например, 3² или 5³.

    • Деление и Умножение : начиная слева, рассчитайте их в том порядке, в котором они появляются в уравнении. Если умножение появляется первым, вы должны завершить его до деления.

    • Сложение и

      admin

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *