Умножение чисел. Множимое, множитель и произведение
- Множимое, множитель и произведение
- Проверка умножения
Умножение — это арифметическое действие, с помощью которого находят сумму одинаковых слагаемых.
Пример. Во дворе посадили 3 ряда ёлок, по 4 ёлки в каждом ряду. Сколько ёлок посадили во дворе?
Чтобы ответить на этот вопрос, надо найти сумму 3 слагаемых, каждое из которых равно 4.
4 + 4 + 4 = 12.
Складывая 3 раза по 4 ёлки, мы получим общее количество ёлок во всех трёх рядах.
Умножить – значит повторить одно число слагаемым столько раз, сколько в другом содержится единиц.
Для записи умножения используется знак х
(косой крест) или ·
(точка), который ставится между числами. Например:
4 х 3 или 4 · 3
Эта запись означает, что 4 надо умножить на 3. Справа от записи умножения ставится знак =
(равно), после которого записывается полученный результат:
4 · 3 = 12.
Умножение – это краткая запись сложения одинаковых слагаемых.
Пример. Умножить 6 на 5 — это значит найти сумму пяти слагаемых, каждое из которых равно шести:
6 + 6 + 6 + 6 + 6 = 30.
Сократим запись, заменив сложение на умножение:
6 · 5 = 30.
Оба выражения равны:
6 + 6 + 6 + 6 + 6 = 6 · 5 = 30,
но для краткости записей лучше всегда использовать умножение, когда число одинаковых слагаемых больше двух.
Множимое, множитель и произведение
Множимое — это число, которое умножают. Множитель — это число, на которое умножают. Например, в записи:
4 · 3,
4 — это множимое, 3 — множитель. Множимое является числом, которое выступает в качестве слагаемого. Множитель — это число, которое указывает количество одинаковых слагаемых.
Произведение — это число, которое получается в результате умножения. Например, в записи:
4 · 3 = 12,
12 — это произведение. При этом сама запись 4 · 3 тоже называется произведением.
Эту запись можно прочитать так: произведение четырёх и трёх равно двенадцати
, четыре умножить на три равно двенадцати
, по четыре взять три раза, получится двенадцать
.
Множимое и множитель иначе называются множителями или сомножителями.
Проверка умножения
Рассмотрим выражение:
4 · 3 = 12,
где 4 — это множимое, 3 — это множитель, а 12 — произведение. Чтобы узнать правильно ли было выполнено умножение, можно:
- Разделить произведение на множитель, если получится число, равное множимому, то умножение было выполнено верно:
12 : 3 = 4.
- Разделить произведение на множимое, если получится число, равное множителю, то умножение выполнено верно: 12 : 4 = 3.
Умножение двух чисел можно проверить делением, для этого произведение делят на один из сомножителей, если частное окажется равно другому сомножителю, то умножение выполнено верно.
Деление дробей: простая инструкция — Лайфхакер
17 февраля 2021ЛикбезОбразование
Простая инструкция с примерами.
Поделиться
0Как делить обыкновенные дроби
На другую дробь
Деление одной дроби на другую — это умножение её на вторую дробь в перевёрнутом виде. В отличие от сложения и вычитания, при делении неважно, какие у дробей знаменатели: одинаковые или разные. Просто умножьте числитель на числитель, а знаменатель на знаменатель и, если у вас получится неправильная дробь, выделите из неё целую часть.
Например, вам нужно разделить 3/5 на 4/9. Для этого поменяйте местами числитель и знаменатель второй дроби — она превратится в 9/4 — и умножьте 3/5 на неё.
Если в примере изначально есть смешанные числа, как 17/20, сначала нужно перевести их в неправильные дроби (в данном случае получится 27/20), а потом делить, как описано выше.
На целое число
Чтобы разделить обыкновенную дробь на целое число, нужно представить его также в виде обыкновенной дроби: в числителе будет оно само, а в знаменателе единица. А затем делить как дробь на дробь. Например:
Можно действовать и ещё проще: умножить знаменатель на данное в примере число, а числитель оставить как есть.
А чтобы, наоборот, разделить целое число на обыкновенную дробь, нужно перевернуть эту дробь и умножить число на неё. Например:
Вспомните, если нужно 👈
- Как умножать обыкновенные и десятичные дроби
Как делить десятичные дроби
На другую дробь
Это можно сделать двумя способами.
Первый — превратить десятичные дроби в обыкновенные. Например, 1,2 — это то же самое, что 12/10, или 12/10 в виде неправильной дроби, или 6/5 — если её сократить. Соответственно, процесс деления будет выглядеть так:
Теперь осталось перевести обыкновенную дробь обратно в десятичную. Для этого нужно умножить её на такое число, чтобы знаменатель получился кратным 10: 10, 100, 1 000 и так далее. В данном случае 4/5 умножаем на 2. Мы получим 8/10. Добавляем к этому нашу целую часть — 4 — и получаем итоговый результат 4,8.
Второй способ деления десятичных дробей — сначала превратить их в целые числа, а потом поставить запятую в получившемся результате.
- Найдите дробь, в которой больше всего знаков после запятой.
- Умножьте все дроби в примере на число, кратное 10, с таким же количеством нулей. Например, если у вас есть дробь 4,25 — это будет 100, а если 1,578 — 1 000.
- Разделите целые числа друг на друга столбиком.
- Отсчитайте слева направо столько знаков, сколько было добавлено нулей при умножении, и поставьте запятую.
Например: 7,44 ÷ 0,4 = (7,44 × 100) ÷ (0,4 × 100) = 744 ÷ 40 = 18,6.
На целое число
Десятичные дроби на целое число делите так же, как и обычные числа, столбиком. Когда в делимом (слева) закончится целая часть, поставьте запятую в частном (справа под чертой). Если делимое не удаётся разделить без остатка, добавляйте к нему нули, пока не получите конечный результат.
Читайте также 🧐
- Как научить ребёнка считать играючи
- Как выучить таблицу умножения легко и быстро
- Гимнастика для ума: 10 увлекательных задач с числами
Порядок действий – Элементарная математика
Уменьшение двусмысленности по договоренности
В общем, никто не хочет быть неправильно понятым. В математике так важно, чтобы читатели понимали выражения именно так, как задумал автор, что математика устанавливает соглашения, согласованные правила для интерпретации математических выражений.
Означает ли 10 − 5 − 3, что мы начинаем с 10, вычитаем 5, а затем вычитаем еще 3, оставляя 2? Или это означает, что мы вычитаем 5 − 3 из 10?
Равно ли 2 + 3 × 10 50, потому что 2 + 3 равно 5, а затем мы умножаем на 10, или автор имеет в виду, что мы добавляем 2 к результату 3 × 10?
Чтобы избежать этих и других возможных неясностей, математика установила соглашения (соглашения) о том, как мы интерпретируем математические выражения. Одно из этих соглашений гласит, что когда все операции одинаковы, мы действуем слева направо, поэтому 10 — 5 — 3 = 2, поэтому автору, который хотел бы другую интерпретацию, пришлось бы писать выражение по-другому: 10 — (5). − 2). Когда операции не такие, как в 2 + 3 × 10, некоторым может быть отдано предпочтение перед другими. В частности, умножение выполняется перед сложением независимо от того, какое из чисел появляется первым при чтении слева направо. Например, в 2 + 3 × 10 умножение должно быть выполнено первым, даже несмотря на то, что оно стоит справа от сложения, а выражение означает 2 + 30.
Полные правила порядка операций см. ниже.
Условные обозначения для чтения и записи математических выражений
Основной принцип: «более мощные» операции имеют приоритет над «менее мощными».
Использование числа в качестве показателя степени (например, 58 = 390625) имеет, как правило, «самый сильный» эффект; использование того же числа в качестве множителя (например, 5 × 8 = 40) дает более слабый эффект; сложение имеет, как правило, самый «слабый» эффект (например, 5 + 8 = 13). Хотя эти термины (мощный, слабый) в математике не употребляются, смысл сохраняется в языке «возведение 5 в 8-ю степень». Возведение в степень «мощно», поэтому оно на первом месте! Сложение/вычитание «слабые», поэтому они идут последними. Умножение/деление находится между ними.
Когда важно указать другой порядок , как это иногда бывает, мы используем круглые скобки для упаковки чисел и более слабую операцию, как если бы они представляли одно число.
Например, хотя 2 + 3 × 8 означает то же, что и 2 + 24 (поскольку умножение имеет приоритет и выполняется первым), (2 + 3) × 8 означает 5 × 8, поскольку (2 + 3) пакетное предложение, количество, которое необходимо выяснить перед его использованием. На самом деле (2 + 3) × 8 часто произносится как «два плюс три, количество, умноженное на восемь» (или «количество два плюс три, умноженное на восемь»).
Краткое изложение правил:
- Сначала скобки. Обращение к ним как к «пакетам» часто помогает детям вспомнить их цель и роль.
- Экспоненты рядом.
- Далее умножение и деление. (Ни один из них не имеет приоритета, и когда они идут последовательно, они выполняются слева направо.)
- Сложение и вычитание в последнюю очередь. (Опять же, ни один из них не имеет приоритета, и последовательная строка из них выполняется слева направо.)
Распространенные заблуждения
Многие учащиеся изучают порядок операций, используя PEMDAS (скобки, возведения в степень, умножение, деление…) в качестве вспомогательного средства для запоминания. Это очень часто приводит к ошибочному представлению о том, что умножение предшествует делению, а сложение предшествует вычитанию. Понимание этого принципа, вероятно, является лучшим помощником в запоминании.
алгебраическое предварительное исчисление — Зачем сначала умножать?
Спросил
Изменено 3 года, 7 месяцев назад
Просмотрено 15 тысяч раз
$\begingroup$
Почему мы сначала умножаем/делим, а потом складываем/вычитаем?
Я имею в виду, что меня интересует, это универсальное правило или правило, установленное человеком? Кроме того, как бы вы решили, что оперировать в первую очередь?
Например, если бы нас посетили инопланетяне, использовали бы они ту же математику? Будут ли они также сначала умножаться, а потом добавлять?
- алгебра-предварительное исчисление
$\endgroup$
6
$\begingroup$
Это всего лишь соглашение по нотации , позволяющее одному из выражений $$(a+b)\cdot c\qquad a+(b\cdot c) $$записываться без круглых скобок. Можно было бы выбрать другое (или для всегда требуются круглые скобки), но подумайте, насколько сложным было бы написание, например. полиномы (если они не записаны в виде произведения линейных множителей). То же самое относится и к тому, почему $a-b-c$ означает $(a-b)-c$, а не $a-(b-c)$. В качестве альтернативы можно ввести префиксную или постфиксную (вместо инфиксной) нотацию, также известную как. (обратная) польская запись, т. е. $ab+c\cdot$ или $\cdot +abc$ по сравнению с $abc\cdot+$ или $+a\cdot bc$.
$\endgroup$
4
$\begingroup$
В дополнение к тому, что сказали другие, порядок операций также является естественным следствием перезаписи выражений, чтобы избежать двусмысленности.
Например, $3\умножить на 4+1$. Если бы все это было сложением, не было бы проблем, потому что сложение коммутативно и ассоциативно.