Правила умножения и сложения: Правила сложения, вычитания, умножения чисел | fizmat.by

Правило умножения и сложения.

Заглавная страница
Избранные статьи
Случайная статья
Познавательные статьи
Новые добавления
Обратная связь

КАТЕГОРИИ:

Археология
Биология
Генетика
География
Информатика
История
Логика
Маркетинг
Математика
Менеджмент
Механика
Педагогика
Религия
Социология
Технологии
Физика
Философия
Финансы
Химия
Экология

ТОП 10 на сайте

Приготовление дезинфицирующих растворов различной концентрации

Техника нижней прямой подачи мяча.

Франко-прусская война (причины и последствия)

Организация работы процедурного кабинета

Смысловое и механическое запоминание, их место и роль в усвоении знаний

Коммуникативные барьеры и пути их преодоления

Обработка изделий медицинского назначения многократного применения

Образцы текста публицистического стиля

Четыре типа изменения баланса

Задачи с ответами для Всероссийской олимпиады по праву



Мы поможем в написании ваших работ!

ЗНАЕТЕ ЛИ ВЫ?

Влияние общества на человека

Приготовление дезинфицирующих растворов различной концентрации

Практические работы по географии для 6 класса

Организация работы процедурного кабинета

Изменения в неживой природе осенью

Уборка процедурного кабинета

Сольфеджио. Все правила по сольфеджио

Балочные системы. Определение реакций опор и моментов защемления

Стр 1 из 2Следующая ⇒

Элементы комбинаторики.

Комбинаторика — раздел математики, в котором изучают задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам, в частности задачи о подсчете числа комбинаций (выборок), получаемых из элементов заданного множества. В каждой из них требуется подсчитать число возможных вариантов осуществления некоторого действия, ответить на вопрос: «Сколькими способами?»

Правило умножения и сложения.

Правило умножения — одно из основных правил комбинаторики. Согласно ему, если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами. Естественным образом обобщается на произвольную длину последовательности. Правило сложения — одно из основных правил комбинаторики, утверждающее, что, если элемент

A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.

 

Размещения, перестановки, сочетания.

Размещение. В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что каждое место занято в точности одним предметом и все предметы различны. Более формально, размеще́нием (из n по k) называется упорядоченный набор из k различных элементов некоторого n-элементного множества.


Например, — это 4-элементное размещение 6-элементного множества {1,2,3,4,5,6}.

Перестановки.В комбинаторике перестано́вка — это упорядоченный набор чисел обычно трактуемый как биекция на множестве , которая числу i ставит соответствие i-й элемент из набора.

Число n при этом называется порядком перестановки.

Сочетания.

В комбинаторике сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.

Так, например, наборы (3-элементные сочетания, подмножества, k = 3) {2, 1, 3} и {3, 2, 1} 6-элементного множества {1, 2, 3, 4, 5, 6} (n = 6) являются одинаковыми (однако, как размещения были бы разными) и состоят из одних и тех же элементов {1,2,3}.

 

Бином Ньютона.

Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

,

где — биномиальные коэффициенты, n — неотрицательное целое число.

Булевы функции. Определение.

.Бу́лева фу́нкция от n переменных — в отображение Bn и B, где B = {0,1} — булево множество. Элементы булева множества 1 и 0 обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определенного смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу. Элементы декартова произведения Bn называют булевыми векторами. Множество всех булевых функций от любого числа переменных часто обозначается P2, а от n переменных — P2(n). Булевы функции названы так по фамилии математика Джорджа Буля. Если n=1, то существует 4 простейших булевых функции: константа тождественная 0, константа тождественная 1, тождественная функция, отрицание.

Реализация булевых функций

1)отрицание, 2)конъюнкция 3)дизъюнкция 4)импликация 5)отрицание импликации 6) эквиваленция 7)стрелка пирса 8)штрих Шеффера

СКНФ.

Совершенной конъюнктивной нормальной формой (СКНФ), относительно некоторого заданного конечного набора переменных, называется такая КНФ, у которой в каждую дизъюнкцию входят все переменные данного набора, причём в одном и том же порядке.

СДНФ

Совершенной дизъюнктивной нормальной формой или СДНФ относительно некоторого заданного конечного набора переменных называется такая ДНФ, у которой в каждую конъюнкцию входят все переменные данного набора, причём в одном и том же порядке. Например: .

8. Переключательные функции. Способы задания.

Основные переключательные функции заложил Дж. Буль.

Переключательную функцию можно задать аналитически, геометрически. Атак же ее можно задать матричным способом и с помощью логической схемы системы.

Граф

Граф или неориентированный граф G — это упорядоченная пара G: = (V,E), для которой выполнены следующие условия:

§ V это непустое множество вершин или узлов,

§ E это множество пар (в случае неориентированного графа — неупорядоченных) вершин, называемых рёбрами.

V обычно считаются конечными множествами. Виды графов:1)ориентированный;2)неоринтированный;3)смешанный;4)мультиграф;

Изоморфи́зм — это очень общее понятие, которое употребляется в различных разделах математики. В общих чертах его можно описать так: Пусть даны два множества с определённой структурой (группы, кольца, линейные пространства и т. п.).Биекция между ними называется изоморфизмом, если она сохраняет эту структуру. Если между такими множествами существует изоморфизм, то они называются

изоморфными.

16.

Матрица смежности — Таблица, где как столбцы, так и строки соответствуют вершинам графа. В каждой ячейке этой матрицы записывается число, определяющее наличие связи от вершины-строки к вершине-столбцу (либо наоборот).

Матрица инцидентности — Каждая строка соответствует определённой вершине графа, а столбцы соответствуют связям графа. В ячейку на пересечении i-ой строки с j-м столбцом матрицы записывается:

в случае, если связь j «выходит» из вершины i,

−1,

если связь «входит» в вершину,

во всех остальных случаях (то есть если связь является петлёй или связь не инцидентна вершине)

Данный способ является самым ёмким (размер пропорционален | E | | V | ) для хранения, но облегчает нахождение циклов в графе.

Планарный граф — граф, который может быть изображен на плоскости без пересечения ребер. Теорема Понтрягина—Куратовского

Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных полному графу из пяти вершин (K5) или графу «домики и колодцы» (K3,3).

 

20. Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство:

,

где e — основание натурального логарифма,

i — мнимая единица.

21.

Выяснить, можно ли всякую расположенную на сфере карту раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета.


Иначе говоря, показать, что хроматическое число плоского графа не превосходит 4.

23. Жадный алгоритм (англ. Greedy algorithm) — алгоритм, заключающийся в принятии локально оптимальных решений на каждом этапе, допуская, что конечное решение также окажется оптимальным.

24.Алгоритм Прима — алгоритм построения минимального остовного дерева взвешенного связного неориентированного графа.

25. Алгори́тм Де́йкстры (Dijkstra’s algorithm) —алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёберотрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов.

Понятие потока в сети.

Ориентированный граф называется сетью, если он удовлетворяет следующим условиям:1) он связный граф без петель 2) существует ровно одна вершина, степень входа равна нулю(источник) 3) существует ровно одна вершина, степень входа равна нулю(сток) 4) каждой дуге поставлено в соответствие неотрицательное число, называемое пропускной способностью.

Элементы комбинаторики.

Комбинаторика — раздел математики, в котором изучают задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам, в частности задачи о подсчете числа комбинаций (выборок), получаемых из элементов заданного множества. В каждой из них требуется подсчитать число возможных вариантов осуществления некоторого действия, ответить на вопрос: «Сколькими способами?»

Правило умножения и сложения.

Правило умножения — одно из основных правил комбинаторики. Согласно ему, если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами. Естественным образом обобщается на произвольную длину последовательности. Правило сложения — одно из основных правил комбинаторики, утверждающее, что, если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.

 

12Следующая ⇒



Читайте также:



Техника прыжка в длину с разбега

Организация работы процедурного кабинета

Области применения синхронных машин

Оптимизация по Винеру и Калману



Последнее изменение этой страницы: 2016-09-18; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь — 161.97.168.212 (0.015 с.)

Теоремы сложения и умножения вероятностей: основные задачи

  • Сложение вероятностей несовместных событий
  • Сложение вероятностей взаимно совместных событий
  • Умножение вероятностей
  • Умножение вероятностей зависимых случайных событий

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A — попадание в утку с первого выстрела, событие B — попадание со второго выстрела. Тогда сумма событий A и B — попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A ∪ B. Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B, или одновременно A и B.

Больше о сути логической суммы можно узнать в соответствующем месте статьи «Булева алгебра (алгебра логики)».

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.


Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

       (3)


Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Можно рассчитать как классические, так и статистические вероятности.


Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие — «взят цветной (не белый) мячик». Найдём вероятность события А:

и события В:

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей — на странице «Различные задачи на сложение и умножение вероятностей».


Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q. В частности,

из чего следуют следующие формулы вероятности противоположных событий:

и .


Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

 

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей — на странице «Различные задачи на сложение и умножение вероятностей».


Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.


Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

           


Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ. Согласно теореме сложения несовместных событий, вычисляем так:

         (5)

Событие А наступит, если наступит одно из двух несовместных событий:  или АВ. Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Поэтому

                              (6)

Аналогично:

Поэтому

                             (7)

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

             (8)

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P(AB) = 0. Четвёртая формула вероятности для несовместных событий такова:


Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

 

Решение.

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность  того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей — на странице «Различные задачи на сложение и умножение вероятностей».


Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A — выпадение герба на первой монете. Событие B — выпадение герба на второй монете. Найти вероятность события C = A + B.

Посмотреть правильное решение и ответ.

Статистика — не Ваша специализация? Закажите статистическую обработку данных

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Логическим произведением двух событий А и В, обозначаемым А ∩ В, называют событие, которое понимают как одновременное наступление событий А и В. Больше о сути логического произведения можно узнать в соответствующем месте статьи «Булева алгебра (алгебра логики)».


Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

                   (4)


Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Посмотреть правильное решение и ответ.

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово «конец».

Посмотреть правильное решение и ответ.

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Посмотреть правильное решение и ответ.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Посмотреть правильное решение и ответ.


Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий — на странице «Различные задачи на сложение и умножение вероятностей».


Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:


Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Решение. Найдём вероятности противоположных событий – того, что груз не будет доставлен одним из видов транспорта:

Теперь у нас есть всё, чтобы найти требуемую в условии задачи вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта:

Решить задачу на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 11. Из полной колоды карт (52 карты) вынимают одновременно четыре карты. Событие А — среди вынутых карт будет хотя бы одна бубновая. Событие B — среди вынутых карт будет хотя бы одна червонная. Найти вероятность события C = A + B.

Посмотреть правильное решение и ответ.


Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий — на странице «Различные задачи на сложение и умножение вероятностей».


Если наступление одного события влияет на вероятность наступления второго события, то события называют взаимно зависимыми.

Если события А и В взаимно зависимы, то условной вероятностью называют вероятность события В, принимая, что событие А уже наступило.


Теорема умножения вероятностей взаимно зависимых событий. Вероятность произведения двух событий равна вероятности одного из них, умноженной на условную вероятность другого при наличии первого, то есть вычисляется по формуле:

или


Пример 12. В ящике 26 лотерейных билетов, из которых 3 с выигрышем. Найти вероятности того, что первый билет будет с выигрышем, вероятность того, что второй билет будет с выигрышем при условии, что первого билета уже нет в ящике и вероятность того, что два взятые подряд билета будут с выигрышем.

Решение. Найдём вероятность того, что первый взятый билет будет с выигрышем:

Найдём вероятность того, что второй взятый билет будет с выигрышем при условии, что первого билета уже нет в ящике:

Найдём теперь вероятность того, что оба взятые подряд билеты будут с выигрышем, т.е. вероятность общего наступления двух зависимых событий, которая является произведением вероятности первого события и условной вероятности второго события:

  

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий — на странице «Различные задачи на сложение и умножение вероятностей».


Статистика — не Ваша специализация? Закажите статистическую обработку данных

НазадЛистатьВперёд>>>

Пройти тест по теме Теория вероятностей и математическая статистика

К началу страницы

Основные понятия теории вероятностей, непосредственное вычисление вероятностей

Формула полной вероятности

Формула Байеса

Независимые испытания и формула Бернулли

Распределение вероятностей дискретной случайной величины

Распределение вероятностей непрерывной случайной величины

Математическое ожидание и дисперсия случайной величины

Биномиальное распределение дискретной случайной величины

Распределение Пуассона дискретной случайной величины

Равномерное распределение непрерывной случайной величины

Нормальное распределение непрерывной случайной величины

Элементы комбинаторики.

Правила умножения и сложения (стр. 1 из 5)

1. Элементы комбинаторики. Правила умножения и сложения.

Комбинаторика – раздел математики, в котором изучаются задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам, в частности задачи о подсчете числа комбинаций (выборок), получаемых их элементов заданного множества. В каждой из них требуется подсчитать число возможных вариантов осуществления некоторого действия, ответить на вопрос: «Сколькими способами?» Многие комбинаторные задачи могут быть решены с помощью следующих 2х важных правил, называемых соответственно правилами умножения и сложения.

Правило умножения.

Если из нек множ первый объект (элемент х) можно выбрать n1 способами и после каждого такого выбора второй объект (элем у) можно выбр n2 способами, то оба объекта (х и у) в указ порядке можно выбрать n1*n2 способами.

Это правило распр-ся на случай трех и более объектов.

Пример: сколько трехзначных чисел можно составить из цифр 1,2,3,4,5, если: а) числа не повт; б) числа могут повтор.

Решение: а) 1ую цифру выбираем 5мя способами, 2ую – 4мя, 3 – 3мя 5*4*3=60 способов

б) 5*5*5=125 сособов

Правило сложения

Если некот объект х можно выбр n1 способами, а объект у можно выбр n2 способами, причем первые и вторые выборы таковы, что они взаимно искл друг друга и не могут быть получены одновременно, то объект хUу (х или у) можно выбр n1+n2 способами.

Пример: Четыре города M,N,P,K соединены дорогами так, что из Mв Nведут 5дорог, из N в K– 6 дорог, из M в P ведут 4 дороги, из P в К – 3 дороги.

Сколькими способами можно проехать из М в К?

Решение: Из М в К через N ведут 5*6=30 дорог, Из М в К через P ведут 4*3=12 дорог

Из М в К ведут 30+12=42 дороги.

2. Размещения, перестановки, сочетания.

Размещениями из n-элементов по m элементов в каждом называются такие комбинации, из которых каждая содержит mэлементов из данных n элементов, и которые отличаются друг от друга порядком их следования, либо самими элементами.

Если элементы комбинации не повторяются.

Размещениями из n-элементов по m элементов с повторениями называются такие комбинации, в которых каждая содержит mэлементов из данных n элементов, записанных в каком нибудь порядке, причем один и тот же элемент может входить в комбинацию более одного раза.

Размещения с повторениями обозначаются Ã и вычисляются по формуле:

Примеры в 1ом вопросе!

Перестановками из n-элементов называются такие комбинации, которые отличаются лишь порядком следования этих элементов.

Пример: Имеется 5 равных геом фигур: 3 желтых и 2 белых круга. Сколько различных узоров можно составить из этих кругов, располагая их в ряд?

Решение: Желтые круги будут повт 2! раз

Белые — 3! раз

Число разл узоров будет равно 5!/2!*3!=10

Перестанови, в которых хотя бы один элемент встречается более одного раза, называются перестановкам с повторениями.

Где

Сочетаниями из n-элементов по m элементов в каждом называются такие комбинации, каждая из которых состоит из mэлементов, выбранных из данных n элементов, и которые отличаются друг от друга хотя бы одним элементом.

Пример: Сколькими способами можно выбрать 3 представителей учебной группы в студ совет, если в группе 25чел.

Сочетаниями из n-элементов по m с повторениями назыв такие комбинации, каждая из которых состоит из mэлементов из данных n элементов, причем один и тот же элемент может входить в комбинацию более одного раза.

Обозначается – Č и вычисл по форм:

3. Бином Ньютона.

Бином Ньютона – это формула, представляющая выражение

в виде многочлена.

Она имеет вид:

Её можно записать иначе:

, где

— число сочетаний из nэлементов по k,

Известные формулы сокращенного умножения: квадрат суммы, квадрат разности, куб суммы, куб разности являются частными случаями бинома Ньютона.

Когда степень бинома невелика, коэффициенты многочлена могут быть получены с помощью треугольника Паскаля.

Любой элемент треугольника паскаля, распол в n-ой строке на k-ом месте выражает

,

Где отчет nведется от 1, а отчет k ведется от 0.

Пример: Представить в виде многочлена

Решение:

4. Булевы функции. Определение. Примеры.

Алгебра логики, выстроенная в XIX веке, долго существовала как абстрактная, хотя и очень красивая наука. Но в середине XX века оказалось, что она имеет конкретное и очень важное применение в современной жизни. Булева алгебра в настоящее время служит основой для описания логики работы аппаратных и программных средств ЭВМ. Она ис­пользует логические переменные, которые принимают лишь два значения 0 и 1. Аналогично и ЭВМ использует лишь сигналы 0 и 1, воспринимая их как логические переменные.

Рассмотрим множество В = {0;1}.

Тогда В2= {(0;0),(0;1),(1;0),(1;1). Снимем разделительный к внутри каждой пары и уберём скобки. Тогда В2 = {00, 01,10,11}. Аналогично В3= Вх В2={000,001,010,011,100,101,110,111} и т. д.,

Каждому элементу множества Вnпоставим в соответствие единст­венный элемент множества В — {0; 1}. Полученное соответствие наз булевой функцией. Элементы множества Вnявляются значениями аргумента булевой функции. Они представляют собой наборы, состоящие из нулей и единиц, и называются кортежами. Длиной кортежа назы­вается число цифр, образующих кортеж. Множество Вn— область определения функции

Множества значений булевой функции, вообще говоря это значение функции В = {0;1}.

Задание булевой функции в виде таблицы, в которой указаны значения каждой переменной кортежа и значение самой функции, называется заданием таблицей истинности или матричным заданием булевой функции.

Геометрическая интерпретация отражает геометрический способ задания булевых функций.

Область определения D(f) булевой функции n = 1 это совокупность двух точек 0 и 1 числовой прямой, т.е. одномерного куба

Если п = 2, то D(f) = {00,01,10,11}- это множество вершин квадрата, т. е. двухмерного куба

Если п = 3, то D(f) = {000,001,010,01 1,100,101,110,111}

множество вершин трёхмерного куба в декартовой системе координат.

На кортежах длины n можно составить

различных простейших булевых функций.

Если n=1, то число простейших булевых функций равно 4, если n=2, то их 16, если n=3, то их 256

Если n=1, то существует 4 простейших булевых функций:

— константа 0(тождественный 0)

— константа 1(тождественная 1)

— тождественная функция

— отрицание

5. Реализация булевых функций формулами.

,

— отрицание

4.3: Правила сложения и умножения вероятностей

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    10893
    • OpenStax
    • OpenStax

    При вычислении вероятности необходимо учитывать два правила при определении того, являются ли два события независимыми или зависимыми, а также являются ли они взаимоисключающими или нет.

    Если A и B — два события, определенные в пространстве выборок, то:

    \[P(A \text{ AND } B) = P(B)P(A|B) \label{eq1}\]

    Это правило также может быть записано как:

    \[P(A|B) = \dfrac{P(A \text{ AND } B)}{P(B)} \nonumber\]

    (Вероятность \(A\) при заданном \(B\) равно вероятности \(A\) и \(B\), деленной на вероятность \(B\).)

    Если \(A\) и \(B\) независимы , то

    \[P(A|B) = P(A). \nonumber\]

    и уравнение \ref{eq1} становится

    \[P(A \text{ AND } B) = P(A)P(B). \nonumber\]

    Если A и B определены на выборочном пространстве, то:

    \[P(A \text{ ИЛИ } B) = P(A) + P(B) — P(A \text{ AND } B) \label{eq5}\]

    Если A и B являются взаимоисключающими , то

    \[P(A \text{ AND } B) = 0. \nonumber\]

    и уравнение \ ref{eq5} становится

    \[P(A \text{ ИЛИ } B) = P(A) + P(B). \nonumber\]

    Пример \(\PageIndex{1}\)

    Клаус пытается выбрать, куда поехать в отпуск. У него есть два варианта: \(\text{A} = \text{Новая Зеландия}\) и \(\text{B} = \text{Аляска}\).

    • Клаус может позволить себе только один отпуск. Вероятность того, что он выберет \(\text{A}\), равна \(P(\text{A}) = 0,6\), а вероятность того, что он выберет \(\text{B}\), равна \(P(\ текст{B}) = 0,35\).
    • \(P(\text{A AND B}) = 0\), потому что Клаус может позволить себе только один отпуск
    • Следовательно, вероятность того, что он выберет Новую Зеландию или Аляску, равна \(P(\text{A OR B}) = P(\text{A}) + P(\text{B}) = 0,6 + 0,35 = 0,95. \). Обратите внимание, что вероятность того, что он никуда не поедет в отпуск, должна быть равна 0,05.

    Карлос играет в американский футбол. Он забивает гол в 65% случаев, когда бросает. Карлос собирается забить два гола подряд в следующем матче. \(\text{A} =\) событие Карлос успешно с первой попытки. \(P(\text{A}) = 0,65\). \(\text{B} =\) событие Карлосу удалось со второй попытки. \(P(\text{B}) = 0,65\). Карлос часто стреляет сериями. Вероятность того, что он забьет второй гол ДАННО что он забил первый гол 0,90.

    1. Какова вероятность того, что он забьет оба гола?
    2. Какова вероятность того, что Карлос забьет первый или второй гол?
    3. Являются ли \(\text{A}\) и \(\text{B}\) независимыми?
    4. Являются ли \(\text{A}\) и \(\text{B}\) взаимоисключающими?

    Растворы

    а. Проблема заключается в том, чтобы найти \(P(\text{A AND B}) = P(\text{B AND A})\). Поскольку \(P(\text{B|A}) = 0,90: P(\text{B AND A}) = P(\text{B|A}) P(\text{A}) = (0,90)(0,65) = 0,585\)

    Карлос делает первое и второе голы с вероятностью 0,585.

    б. Проблема заключается в том, чтобы найти \(P(\text{A OR B})\).

    \[P(\text{A OR B}) = P(\text{A}) + P(\text{B}) — P(\text{A AND B}) = 0,65 + 0,65 — 0,585 = 0,715\]

    Карлос забьет либо первый, либо второй гол с вероятностью 0,715.

    в. Нет, это не так, потому что \(P(\text{B AND A}) = 0,585\).

    \[P(\text{B})P(\text{A}) = (0,65)(0,65) = 0,423\]

    \[0,423 \neq 0,585 = P(\text{B AND A})\ ]

    Итак, \(P(\text{B AND A})\) равно , а не равно \(P(\text{B})P(\text{A})\).

    д. Нет, не потому, что \(P(\text{A и B}) = 0,585\).

    Чтобы быть взаимоисключающими, \(P(\text{A AND B})\) должно равняться нулю.

    Упражнение \(\PageIndex{1}\)

    Хелен играет в баскетбол. При штрафных бросках она бьет в 75% случаев. Теперь Хелен должна выполнить два штрафных броска. \(\text{C} =\) событие, когда Хелен делает первый выстрел. \(P(\text{C}) = 0,75\). \(\text{D} =\) событие, когда Хелен делает второй выстрел. \(P(\text{D}) = 0,75\). Вероятность того, что Елена сделает второй штрафной бросок при условии, что она сделала первый, равна 0,85. Какова вероятность того, что Хелен выполнит оба штрафных броска?

    Ответ

    \[P(\text{D|C}) = 0,85\]

    \[P(\text{C AND D}) = P(\text{D AND C})\]

    \[P(\text{D AND C}) = P(\text{D|C})P(\text{C}) = (0,85)(0,75) = 0,6375\]

    Хелен делает первый и второй штрафной бросок с вероятностью 0,6375.

    Пример \(\PageIndex{2}\)

    В общественной команде по плаванию 150 членов. Семьдесят пять членов являются опытными пловцами. Сорок семь участников являются пловцами среднего уровня. Остальные — начинающие пловцы. Сорок продвинутых пловцов тренируются четыре раза в неделю. Тридцать пловцов среднего уровня тренируются четыре раза в неделю. Десять начинающих пловцов тренируются четыре раза в неделю. Предположим, случайным образом выбран один член команды по плаванию.

    1. Какова вероятность того, что участник является начинающим пловцом?
    2. Какова вероятность того, что участник занимается четыре раза в неделю?
    3. Какова вероятность того, что участник хорошо плавает и занимается четыре раза в неделю?
    4. Какова вероятность того, что участник является продвинутым пловцом и пловцом среднего уровня? Являются ли продвинутый пловец и пловец среднего уровня взаимоисключающими? Почему или почему нет?
    5. Вы начинающий пловец и тренируетесь четыре раза в неделю в независимых видах спорта? Почему или почему нет?

    Ответ

    1. \(\dfrac{28}{150}\)
    2. \(\dfrac{80}{150}\)
    3. \(\dfrac{40}{150}\)
    4. \(P(\text{продвинутый И промежуточный}) = 0\), поэтому это взаимоисключающие события. Пловец не может одновременно быть продвинутым пловцом и пловцом среднего уровня.
    5. Нет, это не независимые события. \[P(\text{новичок И занимается четыре раза в неделю}) = 0,0667\]\[P(\text{новичок})P(\text{занимается четыре раза в неделю}) = 0,0996\] \[0,0667 \ нэкв 0,0996\]

    Упражнение \(\PageIndex{2}\)

    В школе учатся 200 старшеклассников, 140 из которых в следующем году пойдут в колледж. Сорок пойдет прямо на работу. Остальные берут год перерыва. Пятьдесят старшеклассников, поступающих в колледж, занимаются спортом. Тридцать пенсионеров, идущих прямо на работу, занимаются спортом. Пятеро старшеклассников, взявших академический отпуск, занимаются спортом. Какова вероятность того, что старшеклассник берет академический отпуск?

    Ответ

    \[P = \dfrac{200-140-40}{200} = \dfrac{20}{200} = 0,1\]

    Пример \(\PageIndex{3}\)

    Фелисити посещает Modesto JC в Модесто, Калифорния. Вероятность того, что Фелисити запишется на урок математики, равна 0,2, а вероятность того, что она запишется на урок речи, равна 0,65. Вероятность того, что она запишется на урок математики, ПРИ УСЛОВИИ, что она запишется на урок речи, равна 0,25.

    Пусть: \(\text{M} =\) урок математики, \(\text{S} =\) урок речи, \(\text{M|S} =\) математика, данная речь

    1. Какова вероятность того, что Фелисити запишется на математику и речь?
      Найдите \(P(\text{M AND S}) = P(\text{M|S})P(\text{S})\).
    2. Какова вероятность того, что Фелисити запишется на уроки математики или речи?
      Найдите \(P(\text{M ИЛИ S}) = P(\text{M}) + P(\text{S}) — P(\text{M AND S})\).
    3. Являются ли \(\text{M}\) и \(\text{S}\) независимыми? \(P(\text{M|S}) = P(\text{M})\)?
    4. Являются ли \(\text{M}\) и \(\text{S}\) взаимоисключающими? \(P(\text{M AND S}) = 0\)?

    Ответить

    а. 0,1625, б. 0,6875, с. Кивок. №

    Упражнение \(\PageIndex{3}\)

    Учащийся идет в библиотеку. Пусть события \(\text{B} =\) учащийся извлекает книгу и \(\text{D} =\) учащийся извлекает DVD. Предположим, что \(P(\text{B}) = 0,40, P(\text{D}) = 0,30\) и \(P(\text{D|B}) = 0,5\).

    1. Найти \(P(\text{B AND D})\).
    2. Найти \(P(\text{B ИЛИ D})\).

    Ответить

    1. \(P(\text{B И D}) = P(\text{D|B})P(\text{B}) = (0,5)(0,4) = 0,20\).
    2. \(P(\text{B OR D}) = P(\text{B}) + P(\text{D}) — P(\text{B AND D}) = 0,40 + 0,30 — 0,20 = 0,50 \)

    Пример \(\PageIndex{4}\)

    Исследования показывают, что примерно у одной женщины из семи (приблизительно 14,3%), доживших до 90 лет, развивается рак молочной железы. Предположим, что у тех женщин, у которых развивается рак молочной железы, тест отрицательный в 2% случаев. Также предположим, что в общей популяции женщин тест на рак молочной железы дает отрицательный результат примерно в 85% случаев. Пусть у \(\text{B} =\) женщины развился рак молочной железы, и пусть \(\text{N} =\) дал отрицательный результат. Предположим, что наугад выбрана одна женщина.

    1. Какова вероятность того, что у женщины разовьется рак молочной железы? Какова вероятность того, что тест женщины будет отрицательным?
    2. Учитывая, что у женщины рак молочной железы, какова вероятность того, что ее тест будет отрицательным?
    3. Какова вероятность того, что у женщины рак молочной железы И тест отрицательный?
    4. Какова вероятность того, что у женщины рак груди или отрицательный результат?
    5. Имеются ли у вас рак молочной железы и отрицательные независимые результаты тестирования?
    6. Являются ли наличие рака молочной железы и отрицательный результат теста взаимоисключающими?

    Ответы

    1. \(P(\text{B}) = 0,143; P(\text{N}) = 0,85\)
    2. \(P(\text{N|B}) = 0,02\)
    3. \(P(\text{B И N}) = P(\text{B})P(\text{N|B}) = (0,143)(0,02) = 0,0029\)
    4. \(P(\text{B ИЛИ N}) = P(\text{B}) + P(\text{N}) — P(\text{B И N}) = 0,143 + 0,85 — 0,0029 = 0,9901 \)
    5. Нет. \(P(\text{N}) = 0,85; P(\text{N|B}) = 0,02\). Итак, \(P(\text{N|B})\) не равно \(P(\text{N})\).
    6. № \(P(\text{B AND N}) = 0,0029\). Чтобы \(\text{B}\) и \(\text{N}\) были взаимоисключающими, \(P(\text{B AND N})\) должно быть равно нулю

    Упражнение \(\PageIndex{4}\)

    В школе учатся 200 старшеклассников, 140 из которых в следующем году пойдут в колледж. Сорок пойдет прямо на работу. Остальные берут год перерыва. Пятьдесят старшеклассников, поступающих в колледж, занимаются спортом. Тридцать пенсионеров, идущих прямо на работу, занимаются спортом. Пятеро старшеклассников, взявших академический отпуск, занимаются спортом. Какова вероятность того, что старший учится в колледже и занимается спортом?

    Ответ

    Пусть \(\text{A} =\) студент учится в колледже.

    Пусть \(\text{B} =\) студент занимается спортом.

    \(P(\text{B}) = \dfrac{140}{200}\)

    \(P(\text{B|A}) = \dfrac{50}{140}\)

    \(P(\text{A AND B}) = P(\text{B|A})P(\text{A})\)

    \(P(\text{A AND B}) = (\ dfrac{140}{200}\))(\(\dfrac{50}{140}) = \dfrac{1}{4}\)

    Пример \(\PageIndex{5}\)

    См. информация в примере \(\PageIndex{4}\). \(\text{P} =\) положительный результат.

    1. Учитывая, что у женщины развился рак молочной железы, какова вероятность того, что ее тест окажется положительным. Найдите \(P(\text{P|B}) = 1 — P(\text{N|B})\).
    2. Какова вероятность того, что у женщины разовьется рак молочной железы и положительный результат теста? Найдите \(P(\text{B AND P}) = P(\text{P|B})P(\text{B})\).
    3. Какова вероятность того, что у женщины не разовьется рак молочной железы. Найдите \(P(\text{B′}) = 1 — P(\text{B})\).
    4. Какова вероятность того, что у женщины положительный результат теста на рак молочной железы. Найдите \(P(\text{P}) = 1 — P(\text{N})\).

    Ответить

    а. 0,98; б. 0,1401; в. 0,857; д. 0.15

    Упражнение \(\PageIndex{5}\)

    Учащийся идет в библиотеку. Пусть события \(\text{B} =\) учащийся извлекает книгу и \(\text{D} =\) учащийся извлекает DVD. Предположим, что \(P(\text{B}) = 0,40, P(\text{D}) = 0,30\) и \(P(\text{D|B}) = 0,5\).

    1. Найти \(P(\text{B′})\).
    2. Найти \(P(\text{D AND B})\).
    3. Найти \(P(\text{B|D})\).
    4. Найти \(P(\text{D AND B′})\).
    5. Найти \(P(\text{D|B′})\).

    Ответ

    1. \(P(\text{B′}) = 0,60\)
    2. \(P(\text{D И B}) = P(\text{D|B})P(\text{B}) = 0,20\)
    3. \(P(\text{B|D}) = \dfrac{P(\text{B AND D})}{P(\text{D})} = \dfrac{(0,20)}{(0,30) } = 0,66\)
    4. \(P(\text{D И B′}) = P(\text{D}) — P(\text{D AND B}) = 0,30 — 0,20 = 0,10\)
    5. \(P(\text{D|B′}) = P(\text{D AND B′})P(\text{B′}) = (P(\text{D}) — P(\text {D И B}))(0,60) = (0,10)(0,60) = 0,06\)
    1. ДиКамилло, Марк, Мервин Филд. «Файловый опрос». Корпорация полевых исследований. Доступно на сайте www.field.com/fieldpollonline…rs/Rls2443.pdf (по состоянию на 2 мая 2013 г.).
    2. Райдер, Дэвид, «По данным опроса, поддержка Ford резко падает», The Star, 14 сентября 2011 г. Доступно на сайте www.thestar.com/news/gta/2011…_suggests.html (по состоянию на 2 мая 2013 г.).
    3. «Одобрение мэра отключено». Пресс-релиз от Forum Research Inc. Доступен в Интернете по адресу www.forumresearch.com/forms/News Archives/News Releases/74209_TO_Issues_-_Mayoral_Approval_%28Forum_Research%29%2820130320%29.pdf (по состоянию на 2 мая 2013 г.).
    4. «Рулетка». Википедия. Доступно на сайте http://en.Wikipedia.org/wiki/Roulette (по состоянию на 2 мая 2013 г.).
    5. Шин, Хён Б., Роберт А. Комински. «Использование языка в Соединенных Штатах: 2007». Бюро переписи населения США. Доступно на сайте www.census.gov/hhes/socdemo/l…acs/ACS-12.pdf (по состоянию на 2 мая 2013 г.).
    6. Данные из Baseball-Almanac, 2013. Доступно на сайте www.baseball-almanac.com (по состоянию на 2 мая 2013 г.).
    7. Данные Бюро переписи населения США.
    8. Данные Wall Street Journal.
    9. Данные из The Roper Center: Архив общественного мнения Университета Коннектикута. Доступно на сайте www.ropercenter.uconn.edu/ (по состоянию на 2 мая 2013 г.).
    10. Данные корпорации полевых исследований. Доступно на сайте www.field.com/fieldpollonline (по состоянию на 2 мая 2013 г.).

    Правило умножения и правило сложения используются для вычисления вероятности \(\text{A}\) и \(\text{B}\), а также вероятности \(\text{A}\ ) или \(\text{B}\) для двух заданных событий \(\text{A}\), \(\text{B}\), определенных в образце пространства. При выборке с заменой каждый член совокупности заменяется после того, как он выбран, так что этот член имеет возможность быть выбранным более одного раза, а события считаются независимыми. При выборке без замены каждый член совокупности может быть выбран только один раз, и события считаются не независимыми. События \(\text{A}\) и \(\text{B}\) являются взаимоисключающими событиями, если они не имеют общих исходов.

    Правило умножения: \(P(\text{A AND B}) = P(\text{A|B})P(\text{B})\)

    Правило сложения: \ (P(\text{A OR B}) = P(\text{A}) + P(\text{B}) — P(\text{A AND B})\)

    Используйте следующую информацию для ответьте на следующие десять упражнений. Сорок восемь процентов всех зарегистрированных избирателей в Калифорнии предпочитают пожизненное заключение без права досрочного освобождения смертной казни для человека, осужденного за убийство первой степени. Среди латиноамериканцев, зарегистрированных в Калифорнии, 55% предпочитают пожизненное заключение без права досрочного освобождения смертной казни для человека, осужденного за убийство первой степени. 37,6% всех калифорнийцев — латиноамериканцы.

    Пусть в этой задаче:

    • \(\text{C} =\) Калифорнийцы (зарегистрированные избиратели) предпочитают жизнь в тюрьме без права досрочного освобождения смертной казни для человека, осужденного за убийство первой степени.
    • \(\text{L} =\) латиноамериканцы калифорнийцы

    Предположим, случайным образом выбран один калифорнийец.

    Упражнение \(\PageIndex{5}\)

    Найдите \(P(\text{C})\).

    Упражнение \(\PageIndex{6}\)

    Найдите \(P(\text{L})\).

    Ответ

    0,376

    Упражнение \(\PageIndex{7}\)

    Найдите \(P(\text{C|L})\).

    Упражнение \(\PageIndex{8}\)

    Что такое \(\text{C|L}\) словами?

    Ответ

    \(\text{C|L}\) означает, если выбранное лицо является латиноамериканцем из Калифорнии, это лицо является зарегистрированным избирателем, который предпочитает пожизненное заключение без права досрочного освобождения для лица, осужденного за убийство первой степени. .

    Упражнение \(\PageIndex{9}\)

    Найти \(P(\text{L AND C})\)

    Упражнение \(\PageIndex{10}\)

    Что такое \(\text{L AND C}\) словами?

    Ответ

    \(\text{L AND C}\) — это случай, когда выбранное лицо является латиноамериканцем, зарегистрированным избирателем Калифорнии, который предпочитает жизнь без права досрочного освобождения смертной казни для лица, осужденного за убийство первой степени.

    Упражнение \(\PageIndex{11}\)

    Являются ли \(\text{L}\) и \(\text{C}\) независимыми событиями? Покажите, почему или почему нет.

    Упражнение \(\PageIndex{12}\)

    Найти \(P(\text{L OR C})\).

    Ответ

    0,6492

    Упражнение \(\PageIndex{13}\)

    Что такое \(\text{L OR C}\) словами?

    Упражнение \(\PageIndex{14}\)

    Являются ли события \(\text{L}\) и \(\text{C}\) взаимоисключающими? Покажите, почему или почему нет.

    Ответ

    Нет, потому что \(P(\text{L AND C})\) не равно 0.

    Независимые события
    Возникновение одного события не влияет на вероятность возникновения другого события. События \(\text{A}\) и \(\text{B}\) независимы, если выполняется одно из следующих условий:
    1. \(P(\text{A|B}) = P(\text{A})\)
    2. \(P(\text{B|A}) = P(\text{B})\)
    3. \(P(\text{A И B}) = P(\text{A})P(\text{B})\)
    Взаимоисключающий
    Два события являются взаимоисключающими, если вероятность того, что они происходят одновременно, равна нулю. Если события \(\text{A}\) и \(\text{B}\) взаимоисключающие, то \(P(\text{A AND B}) = 0\).

    Эта страница под названием 4.3: Правила сложения и умножения вероятности распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с использованием исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или Страница
        Автор
        ОпенСтакс
        Лицензия
        СС BY
        Версия лицензии
        4,0
        Программа OER или Publisher
        ОпенСтакс
        Показать оглавление
        нет
        Включено
        да
      2. Теги
        1. Сложение вероятностей
        2. Независимые события
        3. Умножение вероятностей
        4. взаимоисключающие
        5. источник@https://openstax. org/details/books/introductory-statistics
        6. источник[1]-stats-733

      Расчет вероятностей с использованием правил сложения и умножения

      Правило сложения

      Правило сложения вероятностей — это правило определения, используемое для нахождения вероятности того, что произойдет событие A или событие B. Это связано с использованием союза «или». Например,

      • Мы можем захотеть найти вероятность того, что на правильном кубике выпадет 3 или 6
      • Страховая компания может захотеть определить вероятность того, что претензия исходит от надежного страхователя или претензия превышает 5000 долларов.

      Существует две версии правила добавления в зависимости от того, являются ли задействованные события взаимоисключающими (не имеют общих элементов) или невзаимозаключающими (совместно используемые элементы). Давайте посмотрим, как выглядит каждая версия.

      1.1 Правило добавления для невзаимоисключающих событий

      Не взаимоисключающие события — это события, которые может произойти одновременно с . На языке вероятностей говорят, что такие события имеют некоторые общие элементы. Примеры включают проигрыш и выигрыш в игре в футбол, вождение автомобиля и прослушивание музыки или роды днем ​​и рождение девочки. Более практические примеры в области финансов и страхования включают владение домом и наличие действующего страхового полиса, наличие кредитной карты при одновременном обслуживании автокредита или неуплату страхового взноса и попадание в аварию.

      Когда два события, A и B, не являются взаимоисключающими, правило сложения говорит нам, что вероятность того, что A или B произойдут, равна сумме вероятностей того, что либо событие произойдет минус вероятность того, что произойдет и то, и другое:

      $$ P(A \cup B) = P(A) + P(B) − P(A \cap B) $$

      Последний член \(P(A \cap B)\) входит в уравнение дважды, т. е. один раз в P(A) и один раз в P(B). Таким образом, мы должны вычесть это один раз, чтобы оно не было двойной счет .

      Диаграмма Венна прекрасно иллюстрирует идею двойного счета. Пересечение между A и B необходимо вычесть при рассмотрении вероятности A или B.

      $$ \begin{align*} \textbf{Рисунок 1.1.1 – }& \textbf{Правило сложения для невзаимоисключающих событий} \\ & \textbf{События} \end{align*} $$

      Пример 1.1.1

      Допустим, вы вынули одну карту из обычной колоды карт. Какова вероятность того, что карта туз или сердце?

      Пусть событие A — выпадение туза, а событие B — выпадение червы.

      \(P(A) = \frac {4}{52}\) и \(P(B) = \frac {13}{52}\)

      \(P(A \text{ и } B) = \frac {1}{52}\)

      Эти два события не исключают друг друга, потому что всегда есть шанс, что карта будет и тузом, и червой.

      Итак,

      $$ \begin{align*} P(A \cup B) & = P(A) + P(B) − P(A \cap B) \\ & = \frac {4}{52} + \frac {13}{52} – \frac {1}{52} \\ & = \frac {16}{52} = \frac {4}{13} \end{align*} $$

      Примечание. В стандартной колоде карт четыре масти: черви, трефы, пики и бубны. В каждой масти по тринадцать карт: туз, 2, 3, 4, 5, 6, 8, 9, 10, валет, дама и король. Таким образом, во всей колоде всего 52 карты.

      Пример 1.1.2

      Гендерная разбивка в математическом классе из 40 учеников: 25 мальчиков и 15 девочек. На экзамене в конце года 12 мальчиков и 5 девочек получили пятерку. Если бы мы выбрали случайного ученика из класса, какова была бы вероятность выбрать мальчика или отличника?

      Пусть G — событие выбора девушки, а A — событие выбора отличника.

      \(P(G) =\frac {15}{40}\) и \(P(A) = \frac {17}{40}\)

      Вероятность выбора девушки, получившей оценку А, равна \(\frac {5}{40}\), т. е.

      \(P(G \text{ и } A) = \frac {5}{40} \)

      Эти два события не исключают друг друга, потому что всегда есть шанс, что выбранная ученица будет и девушкой, и отличницей.

      Итак,

      $$ \begin{align*} P(G \cup A) & = P(G) + P(A) − P(G \cap A) \\ & = \frac {15}{40} + \frac {17}{40} – \frac {5}{40} \\ & = \frac {27}{40} \end{align*} $$

      Пример 1. 1.3

      В консалтинговой фирме работает 100 человек. 51 из них имеют степень в области финансов, 63 — в области экономики и 28 — в обеих областях. Какова вероятность того, что случайно выбранный работник имеет высшее финансовое или экономическое образование?

      Пусть F и E — события, свидетельствующие о том, что сотрудник имеет высшее финансовое и экономическое образование соответственно.

      Наш интерес равен \(P(F \cup E)\)

      $$ \begin{align*} P(F \cup E) & = P(F) + P(E) − P(F \cap E) \\ & = 0,51 + 0,63 – 0,28 \\ & = 0,86 = 86\% \end{align*} $$

      Примечание. Для трех невзаимоисключающих событий A, B и C правило сложения выглядит следующим образом:

      $$ \begin{align*} P(A \чашка B \чашка C) & = {P(A) + P(B) + P(C) – P(A \cap B) – P(B \cap C)} \\ & {- P(A \cap C) + P(A \cap B \cap C)} \end{align*} $$

      Вопрос 1.1.1

      Компания по страхованию жизни подвергает потенциальных страхователей медицинскому осмотру разного уровня в зависимости от определенных факторов, таких как возраст и статус курения человека. Вероятность того, что посещение Life Office не приведет ни к анализу, ни к специалисту, составляет 50%. Из тех, кто обращается в Life Office, 25% направляют к специалистам, а 35% требуют лабораторных исследований. 9В)\)

      $$ P(L \cap S) = 0,35 + 0,25 – 1 + 0,50 = 0,10 $$

      1.2 Правило добавления для взаимоисключающих событий

      Взаимоисключающие — это термин, описывающий два или более события, которые не могут произойти одновременно . В большинстве случаев это означает ситуацию, когда один исход заменяет другой. Бросание игральных костей является основным примером. Невозможно одновременно выбросить и четверку, и шестерку. Точно так же получение четырех на начальном броске не влияет на то, выпадет ли последующий бросок на шестерку. Все броски игральной кости независимы.

      Когда два события, A и B, являются взаимоисключающими, правило сложения говорит нам, что вероятность того, что произойдет A или B , равна сумме вероятностей того, что либо событие произойдет.

      $$ P(A \чашка B) = P(A) + P(B) $$

      Пример 1.2.1

      Спиннер состоит из четырех равных частей, каждая из которых окрашена в желтый, синий, оранжевый и черный цвета. Насколько вероятно, что счетчик остановится на желтом или синем после одного вращения?

      Пусть:

      Y = событие, когда счетчик приземляется на желтый

      B = событие, когда спиннер приземляется на красное

      \(P(Y) =\frac {1}{4}\)

      \(P(B) = \frac {1}{4} \)

      Все четыре раздела не могут происходить одновременно, поэтому

      $$ P(A \cup B) = P(A) + P(B) = \frac {1}{4} + \frac {1}{4} = \frac {1}{2} $$

      Пример 1.2.2

      Какова вероятность того, что из колоды из 52 игральных карт выпадет валет или дама?

      Пусть J представляет событие выпадения валета, а B представляет событие выпадения дамы.

      $$ P(J \cup B) = P(J) + P(B) = \frac {4}{52} + \frac {4}{52} = \frac {8}{52} $$

      Экспоненты: основные правила — сложение, вычитание, деление и умножение

      Обновлено 14 декабря 2020 г.

      Автор Lee Johnson

      Выполнение вычислений и работа с экспонентами являются важной частью математики высокого уровня. Хотя выражения, включающие несколько степеней, отрицательные степени и т. д., могут показаться очень запутанными, все, что вам нужно сделать для работы с ними, можно суммировать с помощью нескольких простых правил. Узнайте, как складывать, вычитать, умножать и делить числа с показателями степени и как упростить любые выражения, в которых они используются, и вы почувствуете себя намного более комфортно, решая задачи с показателями степени.

      TL;DR (слишком длинный; не читал)

      Умножьте два числа с показателями степени путем сложения показателей степени: ​ + ​ n

      Divide two numbers with exponents by subtracting one exponent from the other: ​ x m ​ ÷ ​ x n ​ = ​ x m п

      Когда экспонент повышается на мощность, умножьте экспоненты вместе: ( x Y ) Z = x Y × 444444444444444444444444444444444444444444444444444444444444444444444444444444444444н. z

      Любое число, возведенное в нулевую степень, равно единице: ​ x 0 = 1

      Что такое экспонента?

      Показатель степени относится к числу, в степень которого что-то возводится. Например, 94 = x × x × x × x

      Показатели также могут быть переменными; например, 4 x представляет четыре, умноженные на себя x раз.

      Правила для показателей степени

      Выполнение вычислений с показателями степени требует понимания основных правил, регулирующих их использование. Вам нужно подумать о четырех основных вещах: сложении, вычитании, умножении и делении.

      Сложение и вычитание степеней

      Сложение показателей степени и вычитание показателей степени на самом деле не требует правила. Если число возведено в степень, добавьте его к другому числу, возведенному в степень (либо с другим основанием, либо с другим показателем степени), вычислив результат члена степени, а затем напрямую добавив его к другому.

      admin

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *