Отнять от целого дробь: Как от целого числа отнять дробь

правила, примеры, решения, вычитание из целого числа смешанной дроби

В данной статье рассмотрим правила, согласно которым выполняется действие вычитания смешанных чисел. Разберем конкретные примеры и некоторые нюансы при их решении. Изучим вычитание обыкновенной дроби и натурального числа из смешанного числа, а также — вычитание смешанного числа из дроби и натурального числа. Рассматривать вычитание мы будем при условии вычитания из большего числа меньшее.

Вычитание смешанных чисел

Пусть в качестве исходных данных даны два смешанных числа: abc и def , необходимо выполнить вычитание данных смешанных чисел.

Нам известно, что любое смешанное число возможно представить, как сумму его целой и дробной части, тогда получим:

abc-def=a+bc-d+ef

Свойства действий сложения и вычитания дают возможность выполнить вычисление полученного выражения различными способами. Опираясь на значения дробных частей смешанных чисел

abc и def , необходимо придерживаться следующих схем вычисления:

  • если дробная часть уменьшаемого больше, чем дробная часть вычитаемого:

bc>ef, то вычитание оптимально будет произвести так:

abc-def=(a-d)+bc-ef

Пример 1

Произвести вычитание смешанных чисел: 356-249 .

Решение

Сравним дробные части смешанных чисел, т.е. 56 и 49 . Чтобы определить, какая из дробей больше, приведем их к общему наименьшем знаменателю или наименьшему общему кратному: НОК (6, 9) = 18. При этом дополнительным множителем для дроби 56 станет 18 : 6 = 3; а для дроби 49 – 18 : 9 = 2, поэтому : 56=5·36·3=1518 и 49=4·29·2=818 .

Оценим полученный результат: 1518>818, что означает 56>49. Т.е. дробная часть уменьшаемого больше дробной части вычитаемого, и тогда действие вычитания производится путем раздельного вычитания целых и дробных частей заданных смешанных чисел:

3-2=156-49=1518-818=15-818=718

Т.е.: (3-2)+56-49=1+718=1718

Ответ: 356-249=1718

 

  • если дробные части заданных смешанных чисел равны: bc=ef , а, соответственно разность их равна нулю, то результатом вычитания таких смешанных чисел будет разность их целых частей:

abc-def=(a-d)+bc-ef=a-d+0=a-d

Пример 2

Произвести вычитание смешанных чисел 15710 и 2710 .

Решение

Мы видим, что дробные части заданных чисел равны, т.е. их разность есть нуль. Таким образом, действие вычитания заданных чисел сводится к нахождению разности их целых частей: 15710-2710=15+710-2+710=15-2+710-710=15-2+0=13

Ответ: 15710-2710=13

  • если дробная часть уменьшаемого меньше дробной части вычитаемого: bc<ef , то действие вычитания оптимально произвести так:

abc-def=a-d-ef+bc

Пример 3

Произвести вычитание смешанных чисел: 2625-81415 .

Решение

Проведем сравнение дробных частей заданных чисел, определив для начала наименьший общий знаменатель: НОК (5, 15) = 15, тогда 25=2·35·3=615 .

Следовательно: 615<1415, т.е. дробная часть уменьшаемого меньше дробной части вычитаемого. Таким образом, находить разность заданных смешанных чисел будем так: 2625-81415=26615-81415=26+615-8+1415==26-8-1415+615=18-1415+615

Для начала вычтем дробь из натурального числа (в скобках): 18-1415=(17+1)-1415=17+1+1415=17+11+1415==17+1515-1415=17+115

Тогда 18-1415+615=17+115+615=17+115+615==17+715=17715

Ответ: 2625-81415=17715 .

Вычитание обыкновенной дроби из смешанного числа

Схема вычитания правильной дроби из смешанного числа такая же, как при действии вычитания смешанных чисел.

Пример 4

Найти разницу: 356-415

Решение:

Приведем дробные части заданных чисел к единому наименьшему общему кратному: НОК (6, 15) = 30, тогда 65=5·56·5=2530 и 415=4·215·2=830 .

Таким образом, 56>415 .

В итоге вычитание возможно произвести так: 356-415=3+56-415=3+56-415=3+2530-830=3+1730=31730

Ответ: 356-415=31730

Пример 5

Произвести действие вычитания: 127-37

Решение

Дробные части исходных чисел имеют одинаковый знаменатель, что дает возможность их легко сравнить. Понятно, что 27 меньше, чем 37.

Тогда находить разницу будем так:

127-37=1+27-37=1-37+27=11-37+27==77-37+27=47+27=67

Ответ: 127-37=67.

Добавим еще одну, в общем очевидную деталь вычислений: если дробная часть смешанного числа равна вычитаемой дроби, то итогом вычисления будет число, равное целой части уменьшаемого смешанного числа. К примеру:

16311-311=16+311-311=16+311-311=16+0=16

Чтобы вычесть неправильную дробь из смешанного числа, необходимо выделить целую часть из неправильной дроби, а затем производить вычисление.

Пример 6

Вычислить значение разности: 7512-199 .

Решение: вычитаемая дробь является неправильной, выделим из нее целую часть и получим: 199=219

Приведем к общему знаменателю дробные части заданных чисел и согласно указанным выше схемам произведем вычитание смешанных чисел:

7512-219=7+512-2+19=7-2+512-19==5+1536-436=5+1136=51136

Ответ: 7512-199=51136

.

Вычитание натурального числа из смешанного

Определение 1

Для совершения действия вычитания натурального числа из смешанного, необходимо вычесть заданное натуральное число из целой части смешанного числа, а дробную часть оставить без изменений: abc-n=a-n+bc

Пример 7

Необходимо вычесть из смешанного числа 1511528 натуральное число 44.

Решение: 1511528-44=151+1528-44=151-44+1528=107+1528=1071528

Ответ: 1511528-44=1071528

Вычитание смешанного числа из обыкновенной дроби

Очевидно, что любое заданное смешанное число будет больше единицы. Уменьшаемая дробь должна быть больше вычитаемого, тогда эта дробь – неправильная. Необходимо выделить целую часть из неправильной дроби, и далее выполнение действия вычитания смешанного числа из обыкновенной дроби сведется к вычитанию смешанных чисел.

Пример 8

Необходимо выполнить вычитание: 749-612

Решение 

В первую очередь выделим целую часть неправильной уменьшаемой дроби: 749=829 , тогда заданный пример примет вид: 749-612=829-612

Найдем наименьший общий знаменатель: НОК (9, 2) = 18.

Получим: 29=2·29·2=418 и 12=1·92·9=918.

Тогда:

829-612=8418-6918=8+418-6+918=8-6-918+418==2-918+418=1+1-918+418=1+1-918+418==1+1-918+418=1+918+418=1+918+418==1+9+418=1+1318=11318

Ответ: 749-612=11318

Вычитание смешанного числа из натурального

Чтобы произвести действие вычитания смешанного числа из натурального, сначала от натурального числа отнимаем целую часть смешанного, после чего из полученного результата вычитаем дробную часть:

n-abc=n-a+bc=n-a-bc

Пример 9

Необходимо вычесть из натурального числа 18 смешанное число.

Решение

18-535=18-5+35=18-5-35=13-35=12+1-35==12+1-35=12+11-35=12+55-35=12+5-35==12+25=1225

Ответ: 18-535=1225

Автор: Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Сложение и вычитание обыкновенных дробей

Главная » Дроби онлайн

Сложение и вычитание дробей с одинаковыми знаменателями
Сложение и вычитание дробей с разными знаменателями
Понятие о НОК
Приведение дробей к одному знаменателю
Как сложить целое число и дробь

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

 

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

2 Сложение и вычитание дробей с разными знаменателями

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

4Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

5Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Исследуй дальше: Понятие Дроби- наглядное объяснение

 

Как вычитать дроби | Как работает

«» Научиться вычитать дроби проще, чем могут ожидать студенты, изучающие математику. схема2дизайн

Вычитать дроби просто — почти так же просто, как умножать дроби, — но процесс вычитания отличается в зависимости от того, совпадают ли знаменатели или нижние числа двух дробей.

Реклама

Вычитание дробей с одинаковым знаменателем

При вычитании чисел с одинаковым знаменателем (это означает, что в нижней части обеих дробей находится одно и то же число) вычисление упрощается. Вы просто вычитаете числители или верхние числа друг из друга и оставляете два знаменателя одинаковыми. Вот пример:

3/4 – 1/4 = 2/4

Если числитель и знаменатель имеют общий множитель, упростите дробь, найдя общий множитель и разделив на него оба множителя. В случае 2/4 общий множитель равен 2, а упрощенная версия 2/4 равна 1/2. Обратите внимание, что 2/4 и 1/2 представляют собой точно такое же количество.

Реклама

htm»> Вычитание дробей с разными знаменателями

Шаг 1: Найдите наименьший общий знаменатель

При вычитании дробей с разными знаменателями задача состоит в том, чтобы найти общий знаменатель. Посмотрите на два разных знаменателя и найдите число, кратное обоим, то есть число, которое можно разделить на каждый из знаменателей без остатка.

Предположим, мы вычитаем дробь B (2/5) из дроби A (3/4).

Реклама

Знаменатель дроби A равен 4, а знаменатель дроби B равен 5, и мы знаем, что наименьшее общее кратное 4 и 5 равно 20. В процессе вычитания можно использовать другое общее кратное, например 40, но принято использовать наименьший общий знаменатель.

Примечание : иногда встречаются смешанные числа (также называемые смешанной дробью), представляющие собой комбинацию целого числа и правильной дроби. При вычитании смешанных дробей, таких как 2 1/2 – 1 3/4 , вам нужно преобразовать значения в неправильные дроби, прежде чем найти наименьший общий знаменатель. В этом примере 2 1/2 станет 5/2, а 1 3/4 станет 7/4.

Шаг 2: преобразование обеих дробей

В арифметическом выражении вы можете умножить любую дробь на 1 — это всегда допустимо.

Итак, для каждой дроби вы хотите узнать, на что можно умножить знаменатель, чтобы получить наименьший общий знаменатель при вычитании дробей. Эта цифра всегда будет иметь тот же знаменатель, что и другая дробь.

Поскольку в знаменателе дроби А 4, вам придется умножить на 5, но вы не можете просто умножить знаменатель на 5. Вместо этого вы умножаете всю дробь на 5/5, что равно 1, и поэтому честная игра. Вы должны умножить дробь B на 4/4.

Вот как выглядит преобразование двух разных дробей в дроби с общим знаменателем:

3/4 – 2/5 = (5/5) 3/4 – (4/4) 2/5 = 15 /20 – 8/20

Шаг 3. Вычтите два числителя

Теперь вы готовы вычесть числители.

15/20 – 8/20 = 7/20

В этой задаче нет необходимости в упрощении, потому что нет общего делителя 7 и 20.

Реклама

Часто задаваемые вопросы

Можете ли вы вычесть 2 дроби?

Да. Чтобы вычесть две дроби, найдите общий знаменатель между двумя дробями и вычтите числители.

Процитируйте это!

Пожалуйста, скопируйте/вставьте следующий текст, чтобы правильно цитировать эту статью HowStuffWorks.com:

Джеслин Шилдс «Как вычитать дроби» 9 января 2023 г.
HowStuffWorks.com. 19 июня 2023 г.

Цитирование

Сложение и вычитание в пределах одного целого

Сложение и вычитание в пределах одного целого | НЦЭТМ
  • Фракции
  • Сложение и вычитание в пределах одного целого
  • Мастерство PD Материалы

Сложение и вычитание в пределах одного целого

Корешок 3: Дроби – Тема 3.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *