Как отнять от дроби целое число: Как из целого числа вычесть дробь

Содержание

Как решить примеры с разными знаменателями. Сложение дробей с разными знаменателями методом нахождения общего кратного. Вычитание простых дробных величин, имеющих разный знаменатель

Следующее действие, которое можно выполнять с обыкновенными дробями, — вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Yandex.RTB R-A-339285-1

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 — 2 8 = 3 8 .

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Определение 1

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b — c b = a — c b .

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Пример 1

Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

Решение

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

Наши подсчеты можно записать так: 24 15 — 17 15 = 24 — 17 15 = 7 15

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Пример 2

Найдите разность 37 12 — 15 12 .

Решение

Воспользуемся описанной выше формулой и подсчитаем: 37 12 — 15 12 = 37 — 15 12 = 22 12

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости).

Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Определение 2

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Пример 3

Вычтите из 2 9 дробь 1 15 .

Решение

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 — 3 45 = 10 — 3 45 = 7 45

Краткая запись решения выглядит так: 2 9 — 1 15 = 10 45 — 3 45 = 10 — 3 45 = 7 45 .

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Пример 4

Найдите разность 19 9 — 7 36 .

Решение

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

Считаем ответ: 76 36 — 7 36 = 76 — 7 36 = 69 36

Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ — 1 11 12 .

Краткая запись всего решения — 19 9 — 7 36 = 1 11 12 .

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Пример 5

Найдите разность 83 21 – 3 .

Решение

3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 — 3 = 20 21 .

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

Теперь просто вычтем 3 из него: 3 20 21 — 3 = 20 21 .

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Пример 6

Найдите разность: 7 — 5 3 .

Решение

Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 — 5 3 = 5 1 3 .

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Определение 3

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

Пример 7

Вычислите разность 1 065 — 13 62 .

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 — 13 62 = (1064 + 1) — 13 62

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 — 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

Получается, что 1 — 13 62 = 1 1 — 13 62 = 62 62 — 13 62 = 49 62 .

Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065 — 13 62 = 1065 1 — 13 62 = 1065 · 62 1 · 62 — 13 62 = 66030 62 — 13 62 = = 66030 — 13 62 = 66017 62 = 1064 4 6

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Пример 8

Вычислите разность 644 — 73 5 .

Решение

Вторая дробь – неправильная, и от нее надо отделить целую часть.

Теперь вычисляем аналогично предыдущему примеру: 630 — 3 5 = (629 + 1) — 3 5 = 629 + 1 — 3 5 = 629 + 2 5 = 629 2 5

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Пример 9

Найдите разность 24 4 — 3 2 — 5 6 .

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 — 3 2 , а потом отнимем от нее последнюю дробь:

25 4 — 3 2 = 24 4 — 6 4 = 19 4 19 4 — 5 6 = 57 12 — 10 12 = 47 12

Преобразуем ответ, выделив из него целую часть. Итог — 3 11 12 .

Краткая запись всего решения:

25 4 — 3 2 — 5 6 = 25 4 — 3 2 — 5 6 = 25 4 — 6 4 — 5 6 = = 19 4 — 5 6 = 57 12 — 10 12 = 47 12 = 3 11 12

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Пример 10

Н айдите разность 98 + 17 20 — 5 + 3 5 .

Решение

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 — 5 + 3 5 = 98 + 17 20 — 5 — 3 5 = 98 — 5 + 17 20 — 3 5

Завершим расчеты: 98 — 5 + 17 20 — 3 5 = 93 + 17 20 — 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Обыкновенные дробные числа впервые встречают школьников в 5 классе и сопровождают их на протяжении всей жизни, так как в быту зачастую требуется рассматривать или использовать какой-то объект не целиком, а отдельными кусками. Начало изучения этой темы — доли. Доли — это равные части , на которые разделен тот или иной предмет.

Ведь не всегда получается выразить, допустим, длину или цену товара целым числом, следует принять во внимание части или доли какой-либо меры. Образованное от глагола «дробить» — разделять на части, и имея арабские корни, в VIII веке возникло само слово «дробь» в русском языке.

Дробные выражения продолжительное время считали самым сложным разделом математики. В XVII веке, при появлении первоучебников по математике, их называли «ломаные числа», что очень сложно отображалось в понимании людей.

Современному виду простых дробных остатков, части которых разделены именно горизонтальной чертой, впервые поспособствовал Фибоначчи — Леонардо Пизанский. Его труды датированы в 1202 году. Но цель этой статьи — просто и понятно объяснить читателю, как происходит умножение смешанных дробей с разными знаменателями.

Умножение дробей с разными знаменателями

Изначально стоит определить разновидности дробей

:

  • правильные;
  • неправильные;
  • смешанные.

Далее нужно вспомнить, как происходит умножение дробных чисел с одинаковыми знаменателями. Само правило этого процесса несложно сформулировать самостоятельно: результатом умножения простых дробей с одинаковыми знаменателями является дробное выражение, числитель которой есть произведение числителей, а знаменатель — произведение знаменателей данных дробей. То есть, по сути, новый знаменатель есть квадрат одного из существующих изначально.

При умножении простых дробей с разными знаменателями для двух и более множителей правило не меняется:

a/ b * c/ d = a*c / b*d.

Единственное отличие в том, что образованное число под дробной чертой будет произведением разных чисел и, естественно, квадратом одного числового выражения его назвать невозможно.

Стоит рассмотреть умножение дробей с разными знаменателями на примерах:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 2*3 / 3*7 = 6/ 21 .

В примерах применяются способы сокращения дробных выражений. Можно сокращать только числа числителя с числами знаменателя, рядом стоящие множители над дробной чертой или под ней сокращать нельзя.

Наряду с простыми дробными числами, существует понятие смешанных дробей. Смешанное число состоит из целого числа и дробной части, то есть является суммой этих чисел:

1 4/ 11 =1 + 4/ 11.

Как происходит перемножение

Предлагается несколько примеров для рассмотрения.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

В примере используется умножение числа на обыкновенную дробную часть , записать правило для этого действия можно формулой:

a * b/ c = a*b / c.

По сути, такое произведение есть сумма одинаковых дробных остатков, а количество слагаемых указывает это натуральное число. Частный случай:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Существует еще один вариант решения умножения числа на дробный остаток. Стоит просто разделить знаменатель на это число:

d * e/ f = e/ f: d.

Этим приемом полезно пользоваться, когда знаменатель делится на натуральное число без остатка или, как говорится, нацело.

Перевести смешанные числа в неправильные дроби и получить произведение ранее описанным способом:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

В этом примере участвует способ представления смешанной дроби в неправильную, его также можно представить в виде общей формулы:

a b c = a * b + c / c, где знаменатель новой дроби образуется при умножении целой части со знаменателем и при сложении его с числителем исходного дробного остатка, а знаменатель остается прежним.

Этот процесс работает и в обратную сторону. Для выделения целой части и дробного остатка нужно поделить числитель неправильной дроби на ее знаменатель «уголком».

Умножение неправильных дробей производят общепринятым способом. Когда запись идет под единой дробной чертой, по мере необходимости нужно сделать сокращение дробей, чтобы уменьшить таким методом числа и проще посчитать результат.

В интернете существует множество помощников, чтобы решать даже сложные математические задачи в различных вариациях программ. Достаточное количество таких сервисов предлагают свою помощь при счете умножения дробей с разными числами в знаменателях — так называемые онлайн-калькуляторы для расчета дробей. Они способны не только умножить, но и произвести все остальные простейшие арифметические операции с обыкновенными дробями и смешанными числами. Работать с ним несложно, на странице сайта заполняются соответствующие поля, выбирается знак математического действия и нажимается «вычислить». Программа считает автоматически.

Тема арифметических действий с дробными числами актуальна на всем протяжении обучения школьников среднего и старшего звена. В старших классах рассматривают уже не простейшие виды, а целые дробные выражения , но знания правил по преобразованию и расчетам, полученные ранее, применяются в первозданном виде. Хорошо усвоенные базовые знания дают полную уверенность в удачном решении наиболее сложных задач.

В заключение имеет смысл привести слова Льва Николаевича Толстого, который писал: «Человек есть дробь. Увеличить своего числителя — свои достоинства, — не во власти человека, но всякий может уменьшить своего знаменателя — своё мнение о самом себе, и этим уменьшением приблизиться к своему совершенству».

Сложение и вычитание дробей с одинаковыми знаменателями
Сложение и вычитание дробей с разными знаменателями
Понятие о НОК
Приведение дробей к одному знаменателю
Как сложить целое число и дробь

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

2 Сложение и вычитание дробей с разными знаменателями

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

4Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители . Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

5Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например.

Рассмотрим дробь $\frac63$. Ее величина равна 2, так как $\frac63 =6:3 = 2$. А что произойдет, если числитель и знаменатель умножить на 2? $\frac63 \times 2=\frac{12}{6}$. Очевидно, величина дроби не изменилась, так $\frac{12}{6}$ как у также равно 2. Можно умножить числитель и знаменатель на 3 и получить $\frac{18}{9}$, или на 27 и получить $\frac{162}{81}$ или на 101 и получить $\frac{606}{303}$. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби $\frac{120}{60}$ (равной 2) разделить на 2 (результат $\frac{60}{30}$), или на 3 (результат $\frac{40}{20}$), или на 4 (результат $\frac{30}{15}$) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны целому числу .

Если числитель и знаменатель дроби $\frac{1}{3}$ умножить на 2, мы получим $\frac{2}{6}$, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа $\frac{1}{3}$ и $\frac{2}{6}$ идентичны. Сформулируем общее правило.

Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется.

Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.

Например, мы можем разделить числитель и знаменатель дроби $\frac{126}{189}$ на 63 и получить дробь $\frac{2}{3}$ с которой гораздо проще производить расчеты. Еще один пример. Числитель и знаменатель дроби $\frac{155}{31}$ можем разделить на 31 и получить дробь $\frac{5}{1}$ или 5, поскольку 5:1=5.

В этом примере мы впервые встретились с дробью, знаменатель которой равен 1 . Такие дроби играют важную роль при вычислениях. Следует помнить, что любое число можно разделить на 1 и при этом его величина не изменится. То есть $\frac{273}{1}$ равно 273; $\frac{509993}{1}$ равно 509993 и так далее. Следовательно, мы можем не разделять числа на , поскольку каждое целое число можно представить в виде дроби со знаменателем 1.

С такими дробями, знаменатель которых равен 1, можно производить те же арифметические действия, что и со всеми остальными дробями: $\frac{15}{1}+\frac{15}{1}=\frac{30}{1}$, $\frac{4}{1} \times \frac{3}{1}=\frac{12}{1}$.

Вы можете спросить, какой прок от того, что мы представим целое число в виде дроби, у которой под чертой будет стоять единица, ведь с целым числом работать удобнее. Но дело в том, что представление целого числа в виде дроби дает нам возможность эффективнее производить различные действия, когда мы имеем дело одновременно и с целыми, и с дробными числами. Например, чтобы научится складывать дроби с разными знаменателями . Предположим, нам надо сложить $\frac{1}{3}$ и $\frac{1}{5}$.

Мы знаем, что складывать можно только те дроби, знаменатели которых равны. Значит, нам нужно научиться приводить дроби к такому виду, когда их знаменатели равны. В этом случае нам опять пригодится то, что можно умножать числитель и знаменатель дроби на одно и то же число без изменения ее величины.

Сначала умножим числитель и знаменатель дроби $\frac{1}{3}$ на 5. Получим $\frac{5}{15}$, величина дроби не изменилась. Затем умножим числитель и знаменатель дроби $\frac{1}{5}$ на 3. Получим $\frac{3}{15}$, опять величина дроби не изменилась. Следовательно, $\frac{1}{3}+\frac{1}{5}=\frac{5}{15}+\frac{3}{15}=\frac{8}{15}$.

Теперь попробуем применить эту систему к сложению чисел, содержащих как целую, так и дробную части.

Нам надо сложить $3 + \frac{1}{3}+1\frac{1}{4}$. Сначала переведем все слагаемые в форму дробей и получим: $\frac31 + \frac{1}{3}+\frac{5}{4}$. Теперь нам надо привести все дроби к общему знаменателю, для этого мы числитель и знаменатель первой дроби умножаем на 12, второй — на 4, а третьей — на 3. В результате получаем $\frac{36}{12} + \frac{4}{12}+\frac{15}{12}$, что равно $\frac{55}{12}$. Если вы хотите избавиться от неправильной дроби , ее можно превратить в число, состоящее из целой и дробной частей: $\frac{55}{12} = \frac{48}{12}+\frac{7}{12}$ или $4\frac{7}{12}$.

Все правила, позволяющие проводить операции с дробями , которые мы с вами только что изучили, также справедливы и в случае отрицательных чисел. Так, -1: 3 можно записать как $\frac{-1}{3}$, а 1: (-3) как $\frac{1}{-3}$.

Поскольку как при делении отрицательного числа на положительное, так и при деле­нии положительного числа на отрицатель­ное в результате мы получаем отрицатель­ные числа, в обоих случаях мы получим ответ в виде отрицательного числа. То есть

$(-1) : 3 = \frac{1}{3}$ или $1: (-3) = \frac{1}{-3}$. Знак минус при таком написании относится ко всей дроби целиком, а не отдельно к числителю или знаменателю.

С другой стороны, (-1) : (-3) можно записать как $\frac{-1}{-3}$, а поскольку при деле­нии отрицательного числа на отрицатель­ное число мы получаем положительное число, то $\frac{-1}{-3}$ можно записать как $+\frac{1}{3}$.

Сложение и вычитание отрицательных дробей проводят по той же схеме, что и сложение, и вычитание положительных дро­бей. Например, что такое $1- 1\frac13$? Пред­ставим оба числа в виде дробей и получим $\frac{1}{1}-\frac{4}{3}$. Приведем дроби к общему знаменателю и получим $\frac{1 \times 3}{1 \times 3}-\frac{4}{3}$, то есть $\frac{3}{3}-\frac{4}{3}$, или $-\frac{1}{3}$.

Действия с дробями.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Итак, что из себя представляют дроби, виды дробей, преобразования — мы вспомнили. Займёмся главным вопросом.

Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

Смешанные числа , как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями ! Действия с обыкновенными дробями — это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

Сложение и вычитание дробей.

Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

Короче, в общем виде:

А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь ! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения .

Ещё пример:

Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений…

Дорешайте уж пример самостоятельно. Не логарифм какой… Должно получиться 29/16.

Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах… И ничего не забыл.

А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями . Здесь обнаружатся новые грабли, да…

Итак, нам надо сложить два дробных выражения:

Надо сделать знаменатели одинаковыми. Причём только с помощью умножения ! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби — на х. Получится вот что:

Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки. ..

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе — само число, в знаменателе — единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами — то же самое. (а+в) = (а+в)/1, х=х/1 и т. д. А дальше работаем с этим дробями по всем правилам.

Ну, по сложению — вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой — повторили. Можно и провериться. Порешаем немного?)

Вычислить:

Ответы (в беспорядке):

71/20; 3/5; 17/12; -5/4; 11/6

Умножение/деление дробей — в следующем уроке. Там же и задания на все действия с дробями.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Разные дроби. Сложение и вычитание дробей

Обыкновенные дробные числа впервые встречают школьников в 5 классе и сопровождают их на протяжении всей жизни, так как в быту зачастую требуется рассматривать или использовать какой-то объект не целиком, а отдельными кусками. Начало изучения этой темы — доли. Доли — это равные части , на которые разделен тот или иной предмет. Ведь не всегда получается выразить, допустим, длину или цену товара целым числом, следует принять во внимание части или доли какой-либо меры. Образованное от глагола «дробить» — разделять на части, и имея арабские корни, в VIII веке возникло само слово «дробь» в русском языке.

Дробные выражения продолжительное время считали самым сложным разделом математики. В XVII веке, при появлении первоучебников по математике, их называли «ломаные числа», что очень сложно отображалось в понимании людей.

Современному виду простых дробных остатков, части которых разделены именно горизонтальной чертой, впервые поспособствовал Фибоначчи — Леонардо Пизанский. Его труды датированы в 1202 году. Но цель этой статьи — просто и понятно объяснить читателю, как происходит умножение смешанных дробей с разными знаменателями.

Умножение дробей с разными знаменателями

Изначально стоит определить разновидности дробей :

  • правильные;
  • неправильные;
  • смешанные.

Далее нужно вспомнить, как происходит умножение дробных чисел с одинаковыми знаменателями. Само правило этого процесса несложно сформулировать самостоятельно: результатом умножения простых дробей с одинаковыми знаменателями является дробное выражение, числитель которой есть произведение числителей, а знаменатель — произведение знаменателей данных дробей. То есть, по сути, новый знаменатель есть квадрат одного из существующих изначально.

При умножении простых дробей с разными знаменателями для двух и более множителей правило не меняется:

a/ b * c/ d = a*c / b*d.

Единственное отличие в том, что образованное число под дробной чертой будет произведением разных чисел и, естественно, квадратом одного числового выражения его назвать невозможно.

Стоит рассмотреть умножение дробей с разными знаменателями на примерах:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 2*3 / 3*7 = 6/ 21 .

В примерах применяются способы сокращения дробных выражений. Можно сокращать только числа числителя с числами знаменателя, рядом стоящие множители над дробной чертой или под ней сокращать нельзя.

Наряду с простыми дробными числами, существует понятие смешанных дробей. Смешанное число состоит из целого числа и дробной части, то есть является суммой этих чисел:

1 4/ 11 =1 + 4/ 11.

Как происходит перемножение

Предлагается несколько примеров для рассмотрения.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

В примере используется умножение числа на обыкновенную дробную часть , записать правило для этого действия можно формулой:

a * b/ c = a*b / c.

По сути, такое произведение есть сумма одинаковых дробных остатков, а количество слагаемых указывает это натуральное число. Частный случай:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Существует еще один вариант решения умножения числа на дробный остаток. Стоит просто разделить знаменатель на это число:

d * e/ f = e/ f: d.

Этим приемом полезно пользоваться, когда знаменатель делится на натуральное число без остатка или, как говорится, нацело.

Перевести смешанные числа в неправильные дроби и получить произведение ранее описанным способом:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

В этом примере участвует способ представления смешанной дроби в неправильную, его также можно представить в виде общей формулы:

a b c = a * b + c / c, где знаменатель новой дроби образуется при умножении целой части со знаменателем и при сложении его с числителем исходного дробного остатка, а знаменатель остается прежним.

Этот процесс работает и в обратную сторону. Для выделения целой части и дробного остатка нужно поделить числитель неправильной дроби на ее знаменатель «уголком».

Умножение неправильных дробей производят общепринятым способом. Когда запись идет под единой дробной чертой, по мере необходимости нужно сделать сокращение дробей, чтобы уменьшить таким методом числа и проще посчитать результат.

В интернете существует множество помощников, чтобы решать даже сложные математические задачи в различных вариациях программ. Достаточное количество таких сервисов предлагают свою помощь при счете умножения дробей с разными числами в знаменателях — так называемые онлайн-калькуляторы для расчета дробей. Они способны не только умножить, но и произвести все остальные простейшие арифметические операции с обыкновенными дробями и смешанными числами. Работать с ним несложно, на странице сайта заполняются соответствующие поля, выбирается знак математического действия и нажимается «вычислить». Программа считает автоматически.

Тема арифметических действий с дробными числами актуальна на всем протяжении обучения школьников среднего и старшего звена. В старших классах рассматривают уже не простейшие виды, а целые дробные выражения , но знания правил по преобразованию и расчетам, полученные ранее, применяются в первозданном виде. Хорошо усвоенные базовые знания дают полную уверенность в удачном решении наиболее сложных задач.

В заключение имеет смысл привести слова Льва Николаевича Толстого, который писал: «Человек есть дробь. Увеличить своего числителя — свои достоинства, — не во власти человека, но всякий может уменьшить своего знаменателя — своё мнение о самом себе, и этим уменьшением приблизиться к своему совершенству».

Дробные выражения сложны для понимания ребёнком. У большинства возникают сложности, связанные с . При изучении темы «сложение дробей с целыми числами», ребёнок впадает в ступор, затрудняясь решить задание. Во многих примерах перед тем как выполнить действие нужно произвести ряд вычислений. Например, преобразовать дроби или перевести неправильную дробь в правильную.

Объясним ребёнку наглядно. Возьмём три яблока, два из которых будут целыми, а третье разрежем на 4 части. От разрезанного яблока отделим одну дольку, а остальные три положим рядом с двумя целыми фруктами. Получим ¼ яблока в одной стороне и 2 ¾ — в другой. Если мы их соединим, то получим целых три яблока. Попробуем уменьшить 2 ¾ яблока на ¼, то есть уберём ещё одну дольку, получим 2 2/4 яблока.

Рассмотрим подробнее действия с дробями, в составе которых присутствуют целые числа:

Для начала вспомним правило вычисления для дробных выражений с общим знаменателем:

На первый взгляд всё легко и просто. Но это касается только выражений, не требующих преобразования.

Как найти значение выражения где знаменатели разные

В некоторых заданиях необходимо найти значение выражения, где знаменатели разные. Рассмотрим конкретный случай:
3 2/7+6 1/3

Найдём значение данного выражения, для этого найдём для двух дробей общий знаменатель.

Для чисел 7 и 3 – это 21. Целые части оставляем прежними, а дробные – приводим к 21, для этого первую дробь умножаем на 3, вторую – на 7, получаем:
6/21+7/21, не забываем, что целые части не подлежат преобразованию. В итоге получаем две дроби с одним знаменателям и вычисляем их сумму:
3 6/21+6 7/21=9 15/21
Что если в результате сложения получается неправильная дробь, которая уже имеет целую часть:
2 1/3+3 2/3
В данном случае складываем целые части и дробные, получаем:
5 3/3, как известно, 3/3 – это единица, значит 2 1/3+3 2/3=5 3/3=5+1=6

С нахождением суммы всё понятно, разберём вычитание:

Из всего сказанного вытекает правило действий над смешанными числами, которое звучит так:

  • Если же от дробного выражения необходимо вычесть целое число, не нужно представлять второе число в виде дроби, достаточно произвести действие только над целыми частями.

Попробуем самостоятельно вычислить значение выражений:

Разберём подробнее пример под буквой «м»:

4 5/11-2 8/11, числитель первой дроби меньше, чем второй. Для этого занимаем одно целое число у первой дроби, получаем,
3 5/11+11/11=3 целых 16/11, отнимаем от первой дроби вторую:
3 16/11-2 8/11=1 целая 8/11

  • Будьте внимательны при выполнении задания, не забывайте преобразовывать неправильные дроби в смешанные, выделяя целую часть. Для этого необходимо значение числителя разделить на значение знаменателя, то что получилось, встаёт на место целой части, остаток – будет числителем, например:

19/4=4 ¾, проверим: 4*4+3=19, в знаменателе 4 остаётся без изменений.

Подведём итог:

Перед тем как приступить к выполнению задания, связанного с дробями, необходимо проанализировать, что это за выражение, какие преобразования нужно совершить над дробью, чтобы решение было правильным. Ищите более рациональные способ решения. Не идите сложными путями. Распланируйте все действия, решайте сначала в черновом варианте, затем переносите в школьную тетрадь.

Чтобы не произошло путаницы при решении дробных выражений, необходимо руководствоваться правилом последовательности. Решайте всё внимательно, не торопясь.

Числителем, а то, на которое делят — знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель — в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

  • — калькулятор

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
— Переведение дробей в неправильный вид:
— 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
— Суммирование отдельно целых и дробных частей слагаемых:
— 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

Следующее действие, которое можно выполнять с обыкновенными дробями, — вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Yandex.RTB R-A-339285-1

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 — 2 8 = 3 8 .

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Определение 1

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b — c b = a — c b .

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Пример 1

Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

Решение

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

Наши подсчеты можно записать так: 24 15 — 17 15 = 24 — 17 15 = 7 15

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Пример 2

Найдите разность 37 12 — 15 12 .

Решение

Воспользуемся описанной выше формулой и подсчитаем: 37 12 — 15 12 = 37 — 15 12 = 22 12

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Определение 2

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Пример 3

Вычтите из 2 9 дробь 1 15 .

Решение

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 — 3 45 = 10 — 3 45 = 7 45

Краткая запись решения выглядит так: 2 9 — 1 15 = 10 45 — 3 45 = 10 — 3 45 = 7 45 .

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Пример 4

Найдите разность 19 9 — 7 36 .

Решение

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

Считаем ответ: 76 36 — 7 36 = 76 — 7 36 = 69 36

Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ — 1 11 12 .

Краткая запись всего решения — 19 9 — 7 36 = 1 11 12 .

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Пример 5

Найдите разность 83 21 – 3 .

Решение

3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 — 3 = 20 21 .

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

Теперь просто вычтем 3 из него: 3 20 21 — 3 = 20 21 .

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Пример 6

Найдите разность: 7 — 5 3 .

Решение

Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 — 5 3 = 5 1 3 .

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Определение 3

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

Пример 7

Вычислите разность 1 065 — 13 62 .

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 — 13 62 = (1064 + 1) — 13 62

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 — 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

Получается, что 1 — 13 62 = 1 1 — 13 62 = 62 62 — 13 62 = 49 62 .

Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065 — 13 62 = 1065 1 — 13 62 = 1065 · 62 1 · 62 — 13 62 = 66030 62 — 13 62 = = 66030 — 13 62 = 66017 62 = 1064 4 6

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Пример 8

Вычислите разность 644 — 73 5 .

Решение

Вторая дробь – неправильная, и от нее надо отделить целую часть.

Теперь вычисляем аналогично предыдущему примеру: 630 — 3 5 = (629 + 1) — 3 5 = 629 + 1 — 3 5 = 629 + 2 5 = 629 2 5

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Пример 9

Найдите разность 24 4 — 3 2 — 5 6 .

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 — 3 2 , а потом отнимем от нее последнюю дробь:

25 4 — 3 2 = 24 4 — 6 4 = 19 4 19 4 — 5 6 = 57 12 — 10 12 = 47 12

Преобразуем ответ, выделив из него целую часть. Итог — 3 11 12 .

Краткая запись всего решения:

25 4 — 3 2 — 5 6 = 25 4 — 3 2 — 5 6 = 25 4 — 6 4 — 5 6 = = 19 4 — 5 6 = 57 12 — 10 12 = 47 12 = 3 11 12

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Пример 10

Н айдите разность 98 + 17 20 — 5 + 3 5 .

Решение

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 — 5 + 3 5 = 98 + 17 20 — 5 — 3 5 = 98 — 5 + 17 20 — 3 5

Завершим расчеты: 98 — 5 + 17 20 — 3 5 = 93 + 17 20 — 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т. е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей — правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби — выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т. к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Как от дроби отнять целое число? 14x\3

Новые вопросы

Ответы

Превращаем целое число в дробь:7х=21х/3
Потом вычитаем по правилу выч. и слож. дробей с один. знаменателями. 14х/3-21х/3=-7х/3
Ответ:-7х/3

Похожие вопросы


Сплав содержит 11% меди . 2=-9…

Після першого удосконалення продуктивність верстата зросла на 20%, а після другого – ще на 20%. На скільки процентів зросла продуктивність верстата внаслідок двох удосконалень ?

При тушении мясо теряет 24% своего веса .Сколько нужно взять сырого мяса чтобы получить 19 кг тушеного…

Длина четвёртой части каната составляет 15 дм.Найди длину всего каната.Ответ запиши в метрах….

Математика

Литература

Алгебра

Русский язык

Геометрия

Английский язык

Химия

Физика

Биология

Другие предметы

История

Обществознание

Окружающий мир

География

Українська мова

Українська література

Қазақ тiлi

Беларуская мова

Информатика

Экономика

Музыка

Право

Французский язык

Немецкий язык

МХК

ОБЖ

Психология

Вычитание смешанных чисел с перегруппировкой (использование манипуляций)

Вычитание смешанных чисел с перегруппировкой может быть очень сложным для некоторых (или большинства) учащихся. Есть много способов научить вычитанию смешанных чисел с перегруппировкой с использованием манипуляций, которые могут помочь вашим ученикам осмыслить процесс. В этом посте Рэйчел из You’ve Got This Math поделится тремя своими любимыми способами обучения вычитанию смешанных чисел, когда необходимо заимствование.

Вычитание смешанных чисел с перегруппировкой с использованием манипуляторов – Блоки шаблонов

Блоки шаблонов — это простой способ развить чувство дроби, и если ваши ученики уже знакомы с их использованием для дробей, то это прекрасное место для начала обучения вычитанию смешанных чисел с перегруппировкой с использованием манипуляций.

Допустим, у нас есть задача на вычитание 3 — 1 1/3. Студентам поначалу это может показаться сложным. Вы не можете вычесть 1/3 из 0, поэтому вам нужно перегруппироваться и получить дробь из 3. Для некоторых учащихся это непосильно. Но это не обязательно, особенно если вы используете блоки шаблонов для моделирования процесса.

Вот как это сделать.

  1. Начните с того, что посмотрите на число, из которого вы будете вычитать, и положите его перед собой. (В большинстве случаев при использовании шаблонных блоков целое представляет собой шестиугольник. Вы можете изменить это, но на сегодня мы всегда будем предполагать, что шестиугольник равен одному целому). Поскольку я вычитаю из 3, я собираюсь выложить перед собой три шестиугольника.

2. Теперь пришло время вычитать. Первое, что я хочу сделать, это убрать 1/3, но я не могу этого сделать, потому что все, что у меня есть, это три целых. Если ваши ученики играли с кубиками узоров, то они должны знать, что ромб равен 1/3 шестиугольника. Итак, мы собираемся заменить (здесь мы действительно перегруппировываем) шестиугольник тремя ромбами.

Наконец-то я могу вычесть. Отнимаю 1/3 – один ромб. Затем убираю 1 целое — 1 шестиугольник.

3. И ответ… Все, что осталось сделать, это вычислить долю, которую представляют оставшиеся блоки шаблона. Есть 2 ромба, поэтому у меня 2/3, и есть один шестиугольник, поэтому у меня 1. Ответ на 3 – 1 1/3 равен 1 2/3.

Вычитание с помощью столбцов дробей

Я люблю столбцы дробей или кубы-башни дробей, потому что легко изучать дроби со знаменателями от 2 до 12. Блоки шаблонов ограничивают знаменатель, который можно использовать, но у вас нет этих ограничений. с дробными чертами. Недостатком является то, что в каждом наборе дробных стержней хватает только на одно целое. Таким образом, чтобы использовать их для вычитания смешанных чисел, вам нужно иметь партнеров, чтобы для каждого набора учащихся было два набора дробей.

В Интернете также есть программы, которые позволяют детям использовать манипуляторы для решения проблем. Мне очень понравилось использовать Kidspiration … и вы можете использовать столько дробей, сколько вам нужно.

Итак, как вы используете столбцы дробей или кубы дробей? Давайте попробуем решить проблему.

Наша задача 2 1/4 – 1 1/2. Эта проблема немного сложнее, потому что теперь нам приходится иметь дело с разными знаменателями, но она по-прежнему решаема, когда мы используем дроби.

  1. Как и в случае с блоками шаблонов, мы начинаем с размещения столбцов дробей, из которых мы будем вычитать. Мы возьмем два целых и 1/4.

2. В зависимости от того, насколько глубоко вы хотите разобраться со своими учениками на данном этапе обучения, вы можете выполнить этот шаг или пропустить его. Если вы хотите установить предпосылки того, как они будут решать вычитание смешанных чисел без манипулятивных действий, вы можете сделать это. Этот шаг включает в себя получение общего знаменателя . Некоторые из наших малышей просто знают, что четыре — это наш наименьший общий знаменатель , но другим потребуется немного больше поддержки. Это можно сделать, перечислив несколько кратно каждого знаменателя.

2: 2, 4, 6,

4: 4, 8, 12

После их перечисления легко увидеть, что LCD (наименьший общий знаменатель) равен 4. Мне не нужно делайте что угодно с моей 1/4, но дети должны знать, что я буду вычитать 2/4, когда мы дойдем до этого шага.

3. Третий шаг — перегруппировка. Для этого я уберу одно целое и заменю его четырьмя четвертями. Теперь у меня есть пять четвертей, и я готов вычитать.

4. Эта часть самая простая. Просто уберите половину или две четверти, а затем уберите одно целое.

Если ваши дети не нашли ЖК-дисплей, то все, что вам нужно сделать здесь, это взять блок 1/2 и заполнить его как можно большим количеством четвертей — двумя, если быть точным — и что это то, что они будут вычитать.

5. Наконец, подсчитайте, что осталось. Есть 0 целых тактов и 3 четвертных такта… так что ответ 3/4.

Вычитание с помощью моделей площадей

Для последнего требуются всего две вещи: бумага с сеткой и цветные карандаши. Ваши творческие дети будут любить этот метод. Другое преимущество заключается в том, что единственным ограничением является размер бумаги.

Для этого метода мы вычтем 3 1/4 – 2 5/8.

  1. Для этого метода лучше всего сначала найти ЖК-дисплей.

4: 4, 8,12

8: 8, 16, 24

Наименьший общий знаменатель равен 8, поэтому мы должны найти дробь, эквивалентную 1/4, у которой знаменатель равен 8.

1/4 х 2/2 = 2/8.

2. Теперь мы можем нарисовать наши модели местности. Мы знаем, что нам нужно нарисовать три целых, но мы не можем забыть о наших двух восьмых. Итак, нам фактически нужно будет нарисовать четыре целого, и, исходя из нашего знаменателя, в этих целых должно быть восемь частей. Самое интересное в рисовании моделей заключается в том, что их можно рисовать разными способами. Мы могли бы нарисовать длинный прямоугольник размером 1 х 8 или прямоугольник 2 х 4. Пока в прямоугольнике восемь квадратов, все готово.

3. Шаг 3 — раскрасить модели площадей, чтобы они представляли 3 2/8.

4. Вычитание времени. Карандашом другого цвета мы вычеркнем то, что вычитаем. Во-первых, мы вычеркиваем пять-восьмерки. Важно, чтобы наши студенты знали, что нужно начинать с области, в которой есть только две восьмых, а затем переходить к модели, которая представляет собой целое.

Далее вычеркиваем два целых числа. Важно отметить, что мы должны вычеркивать только те модели площадей, которые равны одному целому. В двух наших моделях дробные части уже вычеркнуты. Мы не можем их использовать, потому что они не равны одному целому.

5. Наконец, считаем, что осталось. Осталось всего пять восьмерок, так что это ответ.

Наши дети учатся самыми разными способами, поэтому важно предоставить им множество способов. И чтобы помочь вам в этом, у нас есть три простых печатных формы, которые позволяют вашим детям изучать вычитание с перегруппировкой, используя манипулятивные приемы.

Нажмите здесь, чтобы получить печатные формы «Вычитание смешанных чисел с перегруппировкой».

Следующие шаги для вычитания смешанных чисел с перегруппировкой

Когда вы будете готовы перейти от манипуляций к абстрактным, я рекомендую использовать контекст пиццы, чтобы поддержать переход от манипуляций к уравнениям и нарисованным от руки моделям.

Если вы ищете готовый ресурс, который поможет вам сделать этот шаг, то я рекомендую мой ресурс «Вычитание смешанных чисел с перегруппировкой с использованием пиццы», который вы можете увидеть, нажав здесь.

Гость-блогер: Рэйчел из You’ve Got This Math

Дроби и как их складывать, вычитать, умножать и делить

1.2 — Дроби и как их складывать, вычитать, умножать и делить

1.2 — Дроби и как их складывать, вычитать, умножать и делить

Обозначение дроби

Дроби (или обыкновенные дроби ) используются для описания части целого объекта. Существует несколько обозначений дробей:
a называется числителем , а b называется знаменателем . Обозначение означает, что мы разбиваем объект на b равных частей и у нас есть и таких штук. Часть или часть объекта, который у нас есть это а / б . Например, если мы разобьем пирог на 4 равных куска и берем 1 кусок то у нас получается 1/4 часть пирога:



Эквивалентные дроби

Обратите внимание, что мы получаем одинаковое количество пирога как в предыдущем примере, если разделить пирог на 8 равных частей и получить 2 из них:
Такие дроби, как 1/4 и 2/8, имеющие одинаковое значение, называются эквивалентные дроби . Этот пример предлагает следующий метод для проверка на равенство двух дробей.

Две дроби равны , если умножить числитель и знаменатель одной дроби на то же целое число дает другая дробь.

Например, 4/5 и 24/30 эквивалентны, потому что мы можем начать с 4/5. и умножьте числитель и знаменатель на 6, чтобы получить 24/30:
Движение в обратном направлении (от 24/30 до 4/5) предполагает следующий метод. для сокращения дроби до младших членов или до ее простейшей эквивалентной дроби :


Приведение дроби к наименьшему члену или к ее простейшему эквиваленту дроби , полностью разложить как числитель, так и знаменатель (т. е. на простые числа). Затем сократите каждый множитель, который встречается как в числителе, так и в числителе. и знаменатель. Осталось простейшая эквивалентная дробь .

Например вот как уменьшить дробь 24/42 это самое простое эквивалентная дробь, а именно 4/7:


Упражнения тренера по алгебре



Неправильные дроби, смешанные дроби и длинное деление

Дробь, у которой числитель меньше знаменателя, называется правильной дробью и дробь, у которой числитель больше знаменателя, называется неправильной дробью . Пример неправильной дроби 7/4. Используя пример пирога, это означает, что вы сломали множество пирогов, каждый из которых разделен на 4 равные части, и у вас есть 7 таких частей:
Неправильные дроби иногда выражаются в виде смешанной дроби , которая представляет собой сумму целое число и правильная дробь, но без знака +. Например, 7/4 в обозначении смешанной дроби. выглядит так:
Обозначение смешанной дроби не используется в этой книге Algebra Help e или в программе Algebra Coach, потому что его слишком легко спутать с произведением целого числа на дробь. Вместо того, чтобы писать мы будем держать знак + и писать.

Длинное деление — это метод преобразования неправильной дроби в смешанную. Проиллюстрируем метод на дроби . Выполните следующие шаги:
  • Установите формат длинного деления, а именно .
  • Так как 5 в 9 идет 1 раз, напишите «1» над 9, напишите 1 × 5 или «5» ниже 9 и вычтите 5 из 9, чтобы получить разницу в 4, например:
  • Затем опустите 2 следующим образом:
    Вот что мы на самом деле сделали: «1» и «5» находятся в десятки место, поэтому они на самом деле представляют числа 10 и 50, как показано здесь:
    Поэтому мы фактически показали, что .
  • Теперь повторите весь процесс с остатком 42. Поскольку 5 в 42 идет 8 раз, напишите «8» над 2, напишите 8 × 5 или «40» ниже 42, и вычтите 40 из 42, чтобы получить остаток 2, например:
  • Это показывает, что . Поскольку остаток 2 меньше делителя 5, это наш окончательный вариант. результат смешанной фракции.



Некоторые специальные дроби

Есть несколько специальных дробей, которые важно распознать:
  • . Любое число n можно превратить в дробь, написав ее над знаменателем 1.
  • . Все, что делится само на себя, равно 1. Мы называем это UFOO (a u seful f orm o f o ne). Подробнее об НЛО позже.
  • Если числитель дроби кратен знаменателю то дробь равна целому числу. Примером является .
  •  не определено для любого числителя n . Деление на ноль в математике запрещено.
  • . Нулевой числитель не проблема. Эта дробь равна 0,
  • .



Сложение или вычитание дробей

На этом рисунке показано, что 2/8 пирога плюс 3/8 пирога равняются 5/8 пирога:
Дроби, имеющие одинаковые знаменатели, называются , как и дроби . Если подумать об этом примере, то следующая процедура добавления или вычитание одинаковых дробей очевидно:

Чтобы сложить или вычесть две одинаковые дроби (дроби, имеющие общий знаменатель) , просто сложите или вычтите числители и приведите результат к общему знаменателю, как это:

Но что, если дроби не имеют общего знаменателя? Ответ заключается в том, что они должны быть затем преобразованы к эквивалентным дробям, которые делают имеют общий знаменатель. Процедура проиллюстрирована на этом примере:

Шаги:
  1. Найдите наименьшее общее кратное двух знаменатели 24 и 30. Применительно к дробям это число называется 90 134 наименьшим общим числом. знаменатель (ЖК-дисплей). В этом примере ЖК-дисплей равен 120.
  2. .
  3. Преобразуйте каждую дробь в эквивалентную дробь, имеющую ЖК 120 в знаменателе. Для этого в данном примере умножьте числитель и знаменатель первой дроби на 5, а числитель и знаменатель второй дроби на 4 (показаны красным).
  4. Сложите числители и поместите над общим знаменателем.
Иногда есть еще один шаг. Результат всегда должен быть выражен как простейшая эквивалентная дробь, например:

Вот еще несколько примеров:

Упражнения тренера по алгебре




Умножение дробей


Умножение дробей дает новую дробь. Умножьте числители, чтобы получить новый числитель и умножить знаменатели, чтобы получить новый знаменатель, как это:
Затем упростите, сократив новую дробь до наименьших членов.

Чтобы умножить дробь на целое число, просто умножьте числитель дроби на целое число, чтобы получить новый числитель, например:

Затем упростите, сократив новую дробь до наименьших членов.

Вот пример того, почему работает первая процедура. Предположим, что есть половина пирога (т. дробь 1/2), как показано слева. Теперь предположим, что вы взяли 2/3 90 134 из 90 135 этой половины пирога. (Слово «из» переводится как математическая операция «умножить».) Это означает, что вы разрезаете половину пирога на 3 равные части и берете 2 из них. В результате получается 2/6 части пирога.


Вот пример того, почему вторая процедура работает. Предположим, вы съели 1/4 часть пирога. и что твой друг съел в 3 раза больше пирога, чем ты. Это означает, что ваш друг съел 3/4 пирога.

Вот еще несколько примеров умножения:

Упражнения тренера по алгебре



Обратные и делящие дроби

Обратные числа играют важную роль при делении дробей. Два числа или дроби называются обратными друг другу. если их произведение равно 1. Например:
4/5 и 5/4 обратны, потому что

8 и 1/8 обратны, потому что


Деление дробей: Процедура заключается в замене деления на дробь на умножение на обратную дробь , например:

Обратите внимание, что вы берете обратная дробь на дне!

Вот почему эта процедура работает:
Суть в том, что вместо того, чтобы видеть дробь, деленную на дробь, ищите одну дробь, числитель и знаменатель которой являются дробями. На первом шаге мы умножили эту дробь на UFOO числитель и знаменатель которого являются дробями. НЛО был выбран так, чтобы дроби в знаменателе сокращались и давали 1. После другого упрощение, оставившее только окончательное умножение дробей.

Пример 1: дробь, деленная на дробь :



Пример 2: дробь, деленная на число. Обратите внимание, что мы нарисовали одну разделительную линию длиннее другого, чтобы вы могли сказать, какая дробь и какой это номер. Первый шаг — преобразовать целое число 4 в дробь 4/1. После нескольких шагов вы получите выражение, показанное синим цветом. Если сравнить это выражение с исходным вы заметите хороший ярлык. Число 4, на которое вы делите дробь, просто становится новый множитель в знаменателе дроби.


Пример 3: число, разделенное на дробь. Проверьте действия. Этот пример сильно отличается от предыдущего!

Упражнения тренера по алгебре



Если вы нашли эту страницу в веб-поиске, вы не увидите
Оглавление в рамке слева.
Щелкните здесь, чтобы отобразить его.

Калькулятор смешанных чисел — преобразование целых чисел в дроби

Онлайн-калькулятор смешанных чисел — это бесплатный и лучший инструмент, который позволяет складывать, вычитать, умножать и делить дробь смешанных чисел. Проще говоря, этот калькулятор дробей и целых чисел позволяет решать задачи дробей с целыми числами и дробями. Этот калькулятор не только упрощает дроби смешанных чисел, но также показывает пошаговый расчет и результат в десятичной дроби, соответствующей заданным входам.

В этом посте мы поможем вам понять, как складывать (+), вычитать (-), умножать (×) и делить (÷) вручную и с помощью онлайн-калькулятора. Но пришло время изучить некоторые основные термины, знаете что? Читать дальше!

Что такое смешанный номер?

Смешанное число можно определить как комбинацию целого числа и правильной дроби, существующих вместе. Из-за такой смеси калькулятор смешанных дробей может складывать, вычитать, умножать и делить каждое смешанное число, чтобы легко решать математические задачи. Кроме того, смешанные числа обычно обозначают цифру, которая существует среди любых двух целых чисел. Его можно создать, объединив 3 части, а именно:

  • Целый номер
  • Числитель
  • Знаменатель

На основании этой комбинации смешанное число признается частично целым и частично дробным. Например, если смешанное число равно 2(1/5), то:

  • Целое число: 2
  • Числитель: 1
  • Знаменатель: 5

Онлайн-калькулятор смешанных чисел — это инструмент, который помогает выполнять вычисления с 3 частями смешанных чисел: «целым числом», «знаменателем» и «знаменателем».

Как складывать смешанные дроби?

Смешанные числа также известны как смешанные дроби. Сложение смешанных дробей удобно выполнять с помощью простой алгебраической формулы, если вы выполняете расчеты вручную. Кроме того, онлайн-калькулятор сложения смешанных чисел позволяет мгновенно складывать смешанные дроби. Формула:

  • (A разделить на b) + (c разделить на d) = (a умножить на d) + (b умножить на c)/ (b умножить на d)

Пример:

Если у нас есть два смешанных числа:

  • 1 (4 / 6)
  • 2 (2/4)

Подставьте значения в приведенную выше формулу:

  • 1 (4 / 6) + 2 (2 / 4) = 10 / 6 + 10 / 4
  • (10*6) + (10*4)/6*4

(60) плюс (40) разделить на (24) = 100 на 24

  • При упрощении: 100 / 24 = 25 / 6
  • 4 (1/6)= 4,16

Однако для сложения смешанных дробей с помощью калькулятора смешанных дробей можно получить быстрые и безошибочные результаты.

Как вычитать смешанные числа?

Вычитание смешанных дробей звучит сложно, но вы можете сделать это вручную с помощью формулы. Сложение и вычитание смешанных чисел можно выполнять таким же образом с аналогичным уравнением формулы, но с измененными знаками. Все, что вам нужно сделать, это заменить знак сложения на знак вычитания в приведенной выше формуле:

(A разделить на B) – (C разделить на D)= (A умножить на D) – (B умножить на C) / ( B умножить на D)

Пример:

Если у нас есть два смешанных числа:

  • 1 (4 / 6)
  • 2 (2/4)

Подставьте значения в приведенную выше формулу:

  • 1 (4/6) – 2 (2/4) = 10/6 – 10/4
  • (10*4) – (10*6)/6*4
  • (40)– (60) разделить на 24 = – 20 разделить на 24
  • При упрощении: – 5 / 6 = – 0,8333

Однако вы можете легко складывать и вычитать смешанные числа с помощью нашего онлайн-калькулятора смешанных чисел.

Как умножать смешанные числа?

Умножение смешанных дробей можно выполнить в три простых шага:

  • Преобразовать все неправильные дроби в правильные.
  • Примените алгебраическую формулу умножения дробей со смешанными числами: a / b * c / d = a * c / b * d.
  • Упростите и уменьшите дробь до возможного значения.

Пример :

Если у нас есть два смешанных числа:

  • 1 (4 / 6)
  • 2 (2/4)

Примените формулу и подставьте в нее значения: a / b * c / d = a * c / b * d.

  • 10/ 6 * 10/ 4 = 10 * 10/ 6 * 4
  • 100/24 ​​

При упрощении уравнения: 100/24 ​​= 26/6 = 4 (1/6)

В десятичных дробях: 4,166.

Тем не менее, умножение смешанных чисел с помощью калькулятора смешанных дробей является наиболее подходящим вариантом для выполнения таких сложных вычислений.

Как делить смешанные дроби?

Хватит волноваться! Онлайн-калькулятор деления смешанных дробей позволяет делить смешанные дроби за доли секунд. Но, если вы хотите показать свою работу в классе (пошагово) по делению смешанных дробей, то мы поможем вам на примере решить такие сложные вычисления вручную.

Пример :

Два смешанных числа:

1 (4 / 6)

2 (2 / 4)

Формула деления смешанных чисел: A / b разделить на c / d = a * d /б*с

Подставив значения в приведенную выше формулу, мы получим: 10 / 6 разделить на 10 / 4 = 10 * 4 / 10 * 6 = 40 / 60

0n упростив, мы получим: 2 / 3 = 0,6667

О Калькулятор смешанных чисел:

Этот онлайн-калькулятор смешанных дробей — это интеллектуальный инструмент, который поможет вам складывать, вычитать, умножать и делить дробь смешанных чисел. Этот калькулятор для простых смешанных дробей и позволяет заменить смешанное число на неправильную/правильную дробь или наоборот.

Как использовать этот калькулятор смешанных чисел (сложение, вычитание, умножение и деление):

Калькулятор упрощения смешанных дробей — это 100% бесплатный инструмент, который упрощает заданное число смешанных дробей в мгновение ока, просто следуйте инструкциям. данный шаг для достижения мгновенных результатов:

Входы:

  • Все, что вам нужно ввести значения смешанной дроби в соответствующие поля этого калькулятора
  • Далее вам просто нужно выбрать знак оператора, с помощью которого вы хотите упростить смешанные числа, это может быть (+, -, ×, ÷)

Помните: Если ваше число смешанных дробей состоит из минуса или знака минус (-), то все, что вам нужно, это поставить минус (-) при добавлении значения в данные поля этого калькулятора.

Выводы:

Итак, после того, как вы заполнили вышеуказанные поля, просто нажмите на кнопку расчета, этот калькулятор покажет:

  • Упрощение чисел смешанной дроби
  • Пошаговый расчет для заданных смешанных фракций
  • Дробь смешанных чисел для данного результата (если возможно)
  • Десятичное число предоставленного результата (если возможно)

Кроме того, вы также можете преобразовать смешанное число в неправильную дробь, используя наш бесплатный онлайн-калькулятор смешанных чисел в неправильную дробь.

Все, что вам нужно, это нажать «1» на вашем калькуляторе, а затем знак «плюс» (+). «1» символизирует целое число смешанной дроби и добавляет числитель или верхнее число дроби.

Что такое 8 4 как смешанное число?

Наибольший общий делитель числа 8/4 равен 2, поэтому при делении и числителя, и знаменателя на 2 мы получили ответ 2/1, значит только 2. Значит, 2 дальше не выражаются смешанным числом.

Что такое 7/4 как смешанное число?

7/4 выражается в смешанном числе или смешанной дроби как 1 3/4, 1 считается целым числом, 3 — числителем, а 4 — знаменателем.

Какие примеры смешанных чисел можно привести?

Смешанным числом называется комбинация целого числа и дроби. Например: если у вас есть две целые груши и одна половина груши, вы можете представить это как смешанное число: 2 + 1/2 груши или 2 1/2 груши.

Что такое 9 4 как смешанное число?

9/4 выражается в смешанном числе как 2 1/4, 2 указывается как целое число, 1 как числитель и 4 как знаменатель.

Что такое 3/2 как смешанное число?

3/2 выражается как смешанная дробь/число как 1 1/2, 1 обозначается как целое число, 1 — числитель, а 2 — знаменатель соответственно.

Что такое 4/3 как смешанное число?

4/3 выражается в смешанном числе как 1 1/3.

Что такое 7 3 как смешанное число?

7/3 выражается в смешанном числе как 2 1/3.

Что такое 8 на 3 как смешанное число?

8 больше 3 или 8/3 выражается в смешанном числе как 2 2/3.

Что такое 11 3 как смешанное число?

1 1/3 в виде смешанного числа выражается как 3 2/3.

Еда на вынос:

Калькулятор смешанных чисел дает вам пошаговую процедуру сложения, вычитания, умножения и деления для всех заданных смешанных чисел. Более того; он также может мгновенно обрабатывать несколько дробей, а также целые числа. Он может служить решателем дробей и даже калькулятором смешанных дробей.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *