Гром какое физическое явление: Физические явления. Гром, гроза и молния

Содержание

Гром-это вещество,явление или физическое тело?

Извините, я не уловил мысль. Помогите понять, что имелось ввиду. «Как и в случае равномерного движения, можно пользоваться формулой [tex]s \: = ut[/t … ex]для определения пути, пройденного за данный промежуток времени при определённой средней скорости, и формулой [tex]t \: = \frac{s}{u} [/tex]для определения времени, за которое пройден данный путь с данной средней скоростью. Но пользоваться этими формулами можно только для того участка пути и для того промежутка времени, для которых эта средняя скорость была рассчитана. Например, зная среднюю скорость на участке пути AB и зная длину AB, можно определить время, за которое был пройден этот участок, но нельзя найти время, за которое была пройдена половина участка АВ, т.к. средняя скорость на половине участка при неравномерном движении, вообще говоря, не будет равна средней скорости на всём участке.Что имеется ввиду под предпоследним предложением? Объясните просторно и понятно, даю 40 баллов​

ПОЖАЛУЙСТА, СРОЧНО! 1).

Известно, что нота «до» первой октавы имеет частоту 262 Hz. Также известно, что частоты двух одноимённых нот соседних октав от … личаются ровно в 2 раза. В какой октаве находится звук, порождённые колебаниями, ищображенными на графике? (график приложен) 2). Нарисовать график 3). Определить музыкальный инструмент

Для того, чтобы быстрее остудить кастрюлю с горячей водой, Вам предложили: 1) поставить кастрюлю на лёд, 2) положить лёд на крышку кастрюли. Выберите … один из вариантов и обоснуйте его.

В системе, показанной на рисунке, все нити невесомы и находятся в вертикальном положении. Верхний груз в два раза легче нижнего. Верхняя нить натянута … с силой T1=19 Н, нижняя — с силой T3=10 Н. Определите силу натяжения средней нити T2 .

28. На полиці стоять дві бронзові статуетки, одна з яких є учетверо зменшеною копією другої. У скільки разів відрізняються тиски, що створюють ці стат … уетки на полицю? 29. Знайти максимальну висоту колони, яку можна збудувати з каменю, що має межу міцності на стискання 5 МПа і густину 5000 кг/м3.

Вважати g = 10 м/с2. 30. Який тиск чинить вода на нижню поверхню плоскої крижинки площею 20 см2 та масою 500 г?

Визначити омічний опір коливального контуру, індуктивність якого 1 Гн, якщо за час 0,01 с амплітуда напруги на конденсаторі зменшуєтся в 4 рази

Решите пожалуйста 3 задачи​

Решите пожалуйста эти 3 задачи)​

решите пожалуйста задачу 18 даю 20 баллов

решите пожалуйста задачу 11 даю 20 баллов

физика атмосферы, в результате чего

Такое явление, как гроза, одновременно пугает и завораживает. Вспышки молний, расчерчивающих потемневшее небо, и страшные раскаты грома… В древности люди думали, что так боги проявляют свой гнев на жителей Земли. В настоящее время наука может дать точное описание и объяснение этому природному явлению.

Как появляется молния и гром: краткое описание явления

Искровой разряд

Молния — это гигантский электрический разряд, всегда сопровождающийся яркой вспышкой и звуковыми раскатами — громом. Вспышка молнии редко бывает одиночной, обычно они бывают от 2-3 до нескольких десятков разрядов. Образование этого явления возможно в кучево-дождевых облаках или слоисто-дождевых тучах огромных размеров (до 7 км в высоту). Такие облака и тучи легко выделить среди других по насыщенному темно-синему цвету. 

Источник: yandex.by

Молнии могут образовываться:

  1. Внутри одной тучи.
  2. Между соседними наэлектризованными облаками.
  3. Между тучами и поверхностью земли. 

Грозовые облака состоят из пара, который в верхних слоях тучи из-за низкой температуры конденсирован в виде кристалликов льда. Для того чтобы туча стала грозовой, ледяные кристаллы внутри нее должны начать активно двигаться. Этому способствуют потоки теплого воздуха, поднимающиеся с нагретой поверхности. Теплые массы воздуха влекут за собой вверх более мелкие кристаллики льда, которые наталкиваются на более крупные. В результате этого процесса маленькие кристаллы оказываются положительно заряженными, крупные — отрицательно заряженными.

При этом маленькие кристаллики льда концентрируются в верхней части тучи, которая становится положительно заряженной, а большие — в нижней, отрицательно заряженной. Напряженность электрического поля в таком облаке достигает огромных значений: 1 миллион вольт на 1 метр. При соприкосновении противоположно заряженных слоев в местах столкновения ионы и электроны образуют канал, все заряженные частицы устремляются по нему вниз, и образуется мощный электрический разряд — молния. 

Полученный канал раскаляется до 30000 градусов Цельсия и образует яркий свет, который видно доли секунды. После того, как канал образован, грозовая туча начинает разряжаться: за первым ударом молнии следуют два и более разрядов. 

Звук разряда

Через несколько секунд после вспышки молнии возникает гром. Гром — это взрывоподобные колебания воздуха, которые происходят из-за резкого повышения давления вдоль канала, чему способствует разогрев атмосферы до 30000 градусов Цельсия.  

Удар молнии — это своего рода взрыв, который вызывает ударную волну, очень опасную для человека или животного, оказавшегося поблизости. Находясь на отдаленном расстоянии от эпицентра грозы, мы не можем ощутить ударную волну электрического разряда, но хорошо слышим звуковую, которую и называем громом или громовыми раскатами.

Сколько молний возникает ежедневно

Благодаря данным со спутников ученые узнали, что в каждую секунду на Земле происходит 44 ± 5 ударов молнии. То есть за сутки случается более 3,5 миллионов разрядов, а их количество в год составляет порядка 1,4 миллиарда. При этом около 25% ударяют в землю и примерно 75% вспыхивают среди облаков.

Природа молнии в физике

Молния не образуется мгновенно из ничего, хоть все и происходит очень быстро. Один электрический разряд можно разделить на 2 стадии:

  1. Ступенчатый лидер.
  2. Обратная вспышка.

Ступенчатый лидер

Перед вспышкой молнии в небе можно увидеть небольшое пятно, которое движется от облака к поверхности земли.

Это пятно называют «ступенчатым лидером», оно является тем самым каналом, по которому чуть позже будет произведен электрический разряд. Лидер может разветвляться, как и последующий удар молнии по этому каналу. Происходит это из-за неравномерной ионизации воздуха. 

Обратная вспышка

Когда ступенчатый лидер достигает поверхности земли, по проложенному им каналу начинает течь ток. В этот момент и можно видеть основную вспышку молнии, которая сопровождается огромным выделением энергии и высокими показателями силы тока. При этом лидер всегда распространяется от тучи к земле, а яркая вспышка, которую мы называем молнией, наоборот, от земли к туче.

Молния — это явление, которое идет не от тучи к земле, а происходит между ними.

Почему возникает гром

Удар молнии всегда сопровождается звуками грома. Объясним, как возникает гром.

При вспышке молнии происходит резкий скачок температуры окружающего воздуха до огромных значений, что приводит к расширению нагретого воздуха по типу взрыва, вызывающему ударную волну или раскат грома.

Почти всегда громкость звука увеличивается к концу раската из-за отражения звука от облаков и поверхности земли. Чем большее число молний прошло по каналу, тем продолжительнее будет сотрясение воздуха. При значительной длине электрического разряда звук с разных его участков доходит в разное время и образуются громовые раскаты.

Скорость света и скорость звука

Из-за того, что скорость звука (330 метров в секунду) гораздо меньше скорости света (299 792 458 метров в секунду), гром всегда появляется немного позже молнии. 

По времени задержки грома от молнии можно рассчитать расстояние до того места, куда ударил разряд. Для этого нужно посчитать, сколько секунд прошло между вспышкой и звуками грома. 3 секунды будут примерно равны расстоянию в 1 километр.

Разновидности молний

На Земле существует несколько разновидностей молний. 

  1. Наземные (составляют всего около 25% от общего количества).
  2. Внутриоблачные (самое распространенное явление).
  3. Молнии, образующиеся в высших слоях атмосферы, которые можно увидеть только при помощи специальных приборов.
  4. Вулканические.
  5. Огни святого Эльма.
  6. Шаровые.

К наземным относятся:

Линейная. Частый вид, образование которого мы как раз и приводили выше, описывая разряд между небом и землей. Молния представляет собой изогнутую линию с ответвлениями, один конец которой находится в небе, другой — на поверхности земли. 

Источник: pxhere.com

Молния «земля-облако» образуется, когда разряд попадает в объект, расположенный на большой высоте. Высокие предметы накапливают электростатический заряд и тем самым приманивают молнии.

Источник: yandex.uz

Ленточная. Интересный редкий вид молнии, который представляет собой ряд одинаковых каналов, находящихся на небольшом расстоянии и параллельных друг другу. Ученые считают, что причиной данного явления выступает сильный ветер, который значительно расширяет каналы.

Источник: popmech.ru

Пунктирная или жемчужная. Очень редкий вид, который представляет собой не сплошной разряд, а линию, состоящую из частых промежутков, похожих на пунктиры. Ученые предполагают, что такой эффект возможен по причине быстрого остывания некоторых участков молнии. 

Источник: tainaprirody.ru

Шторовая. В отличие от других видов возникает над облаками. Внешне выглядит эффектно — как сеть разрядов. При ней можно слышать негромкий гул. Такую молнию впервые сфотографировали только в 1994 году.

Источник: rusdialog.ru

Внутриоблачные или межоблачные электрические разряды бывают 2-х видов:

«Облако-облако». Самый распространенный вид молний, когда оба концы электрического разряда находятся в небе. Это происходит потому, что соседние облака имеют разные заряды и пробивают друга друга. Такой вид молнии не опасен для человека, так как не достигает поверхности земли.

Источник: wallhere.com

Горизонтальная. Напоминает собой молнию «облако-земля», но при этом не достигает земли. Вспышки по небу распространяются в разные стороны, выглядит такой разряд очень эффектно и считается чрезвычайно мощным. 

Источник: agrometeo.od.ua

Вспышки, которые образуются на высоте 40 км и выше от поверхности земли, делятся на:

Спрайты. Привычные нам электрические разряды образуются на высоте порядка 16 км. Спрайты же возникают гораздо выше, от 50 до 130 км над землей. Это вспышки холодной плазмы, которые бьют из облаков вверх. Они образуются группами при сильной грозе и появляются спустя несколько секунд после мощной молнии. Обладают следующими параметрами: средняя длина вспышки составляет 60 км, длительность — до 100 миллисекунд, диаметр — до 100 км.

Источник: mirkosmosa.ru

Эльфы. Представляют собой масштабные разряды в виде конусов со слабым красным светом. Их диаметр около 400 км. Возникают в верхних частях грозовых облаков. Их высота составляет 100 км, длительность — 3 миллисекунды.

Источник: interplanetaryfest.org

Джеты. Вспышки с синим свечением и трубчато-конусной формой. В высоту достигают 40-70 км. Длятся чуть дольше эльфов.

Источник: twitter.com

Необычными видами электрических разрядов считаются:

Вулканическая. Такой вид образуется при извержении вулкана. Связано это со столкновением электрических зарядов, которые несут в себе пепел и магма.

Источник: emosurf.com

Огни Святого Эльма. Это разряды, возникающие на острых концах высоких объектов (вершины скал, мачты судов, деревья, башни и т.п.). Возникают по причине высокой напряженности электрического поля во время грозы летом или метели зимой.

Источник: knowhow.pp.ua

Шаровая. Этот вид электрического разряда представляет собой шарообразный сгусток плазмы диаметром 10-20 см, который свободно перемещается по воздуху, имеет непредсказуемую траекторию движения и способен взрываться. С уверенностью можно говорить о том, что это самый интересный и малоизученный вид молний.

Источник: www.yapfiles.ru

Интересные факты о молниях в небе

  1. Самая длинная молния на Земле зафиксирована в 2007 году в Оклахоме, США. Ее длина составила 321 км.
  2. Самая долгая молния — наблюдалась в течение 7,74 секунды — зафиксирована в Альпах.
  3. Похожие природные явления образуются и на других планетах. Ученым удалось зафиксировать вспышки на Венере, Уране, Сатурне, Юпитере и выяснить, что на Сатурне они гораздо мощнее, чем на Земле.
  4. Значения характеристик тока в молнии очень высоки: сила тока порой достигает сотен тысяч Ампер, напряжение равно миллиарду Вольт.
  5. Температура канала молнии достигает рекордных 30000 градусов Цельсия, что почти в 5-6 раз больше температуры на Солнце, а ширина канала, по которому проходит ток, — всего 1 сантиметр в диаметре.
  6. Скорость молнии составляет в среднем около 56000 км в секунду, при том что гроза движется со скоростью около 40 км/час. Средняя длина электрического разряда равна 9,5 километрам.
  7. Обычная вспышка длится 0,2-0,3 секунды и состоит из 3-4 электрических разрядов.
  8. В Венесуэле, в устье реки Кататумбо, круглый год ночью можно наблюдать множество молний, которые возникают без перерыв в течение длительного времени. Пик необычного явления приходится на май и октябрь.
  9. При попадании электрического разряда в песок или горную породу образуются фульгуриты. Фульгуриты представляют собой стеклянные, полые внутри трубочки разнообразных форм и размеров.
  10. Молния попадает в самолеты один раз за 5-10 тысяч летных часов.
  11. Вероятность увидеть шаровой сгусток плазмы — 1 к 10 000.
  12. Вероятность умереть от удара молнии довольно низкая: 1 к 2000000.
  13. При попадании электрического разряда непосредственно в землю или человека оставляет витиеватые следы, которые внешне напоминают молнию по форме.
  14. Молния всегда ищет самый короткий путь для удара между землей и небом. Поэтому чаще всего бьет в высокие объекты, возвышающиеся над поверхностью земли. Именно по этой причине во время грозы очень опасно находиться на равнине или на поверхности воды, так как человек в этом случае превращается в самый высокий объект.
  15. Громоотводы были придуманы в качестве ловушки для молний, но стопроцентной гарантии они не дают. По наблюдениям ученых 3 заряда из 10 приходят мимо.

Если в вашей учебе наметилась непогода, срочно обращайтесь за помощью к образовательному сервису Феникс.Хелп. Как надежный громоотвод, мы возьмем всю вашу учебную нагрузку на себя.

что об этом нужно знать

В теплое время года довольно часто бывают грозы ‑ впечатляющие природные явления, тем не менее, вызывающие не только любопытство, но и страх. Во время грозы между облаками и Землей возникают электрические разряды, которые хорошо видно и слышно: молния наблюдается в виде ветвящихся светящихся линий, пронизывающих небо, а несколько позже мы слышим раскатистый звук грома. При этом, как правило, наблюдается ливневый дождь, сопровождающийся шквальным ветром и градом. Гроза является одним из наиболее опасных атмосферных явлений: только наводнения связаны с большим, чем у гроз количеством человеческих жертв. Интерес к изучению природного электричества возник еще в давние времена. Первым, кто исследовал электрическую природу молнии, был Бенджамин Франклин – американский политический деятель, но вместе с тем ученый и изобретатель. Именно он еще в 1752 году предложил первый проект молниеотвода. Давайте попробуем разобраться, какую опасность несет гроза, и что нужно знать и делать, чтобы себя обезопасить.

Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 100 молний в секунду или свыше 8 миллионов в день. По поверхности планеты грозы распределяются неравномерно. Над океаном гроз наблюдается приблизительно в десять раз меньше, чем над континентами. В тропической и экваториальной зоне (от 30° северной широты до 30° южной широты) сосредоточено около 78 % всех молниевых разрядов. Максимум грозовой активности приходится на Центральную Африку. В полярных районах Арктики и Антарктики и над полюсами гроз практически не бывает. Интенсивность гроз следует за солнцем: максимум гроз приходится на лето (в средних широтах) и дневные послеполуденные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца. На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер.

Во время грозы между тучами и Землей возникает огромное напряжение, достигающее значения в 1000000000 В. При таком напряжении воздух ионизируется, превращаясь в плазму, и возникает гигантский электрический разряд с силой тока до 300000 А. Температура плазмы в молнии превышает 10000 °С. Молния проявляется яркой вспышкой света и ударной звуковой волной, которую несколько позднее слышно в качестве грома. Опасна молния еще и тем, что она может ударить совершенно неожиданно, и ее путь может быть непредсказуем. Однако расстояние до грозового фронта и скорость его приближения или удаления можно легко определить при помощи секундомера. Для этого необходимо засечь время между вспышкой света молнии и раскатом грома. Скорость звука в воздухе составляет примерно 340 м/с, поэтому, если вы услышали гром через 10 с после вспышки света, то до грозового фронта примерно 3,4 км. Измеряя таким образом время между вспышкой света и громом, а также время между разными ударами молнии, можно определить не только расстояние до них, но и скорость приближения или удаления грозового фронта:

где  – скорость звука,  – время между вспышкой света и громом первой молнии,  – время между вспышкой света и громом второй молнии,  – время между молниями. Если значение скорости получится положительным, то грозовой фронт приближается, а если отрицательным – удаляется. При этом необходимо учитывать, что направление ветра не всегда совпадает с направлением движения грозы.

Если все-таки вы попали в грозу, то следует соблюдать ряд простых правил, чтобы себя обезопасить:

Во-первых, во время грозы желательно избегать открытой местности. Молния с большей вероятностью бьет в самую высокую точку, одинокий человек в поле – это и есть та самая точка. Если Вы по какой-то причине остались в поле один на один с грозой, спрячьтесь в любом возможном углублении: канавке, ложбинке или самом низком месте поля, сядьте на корточки и пригните голову. При этом следует помнить, что песчаная и каменная почвы имеют меньшую электропроводность, а значит, они безопаснее, чем глинистая. Не следует прятаться под отдельно стоящими деревьями, так как они в первую очередь подвержены ударам молнии. А если вы находитесь в лесу, то лучше всего прятаться под низкорослыми деревьями с густой кроной.

Во-вторых, во время грозы избегайте воды, так как природная вода – хороший проводник тока. Удар молнии распространяется вокруг водоема в радиусе около 100 метров. Нередко она бьет в берега. Поэтому во время грозы необходимо подальше отойти от берега, при этом нельзя купаться и ловить рыбу. Кроме того, при грозе желательно избавиться от металлических предметов. Часы, цепочки и даже раскрытый над головой зонтик – потенциальные цели удара. Известны случаи удара молнии по находящейся в кармане связке ключей.

В-третьих, если гроза застала Вас в машине, то она достаточно хорошо защищает от молнии, так как даже при ударе молнии разряд идет по поверхности металла. Поэтому закройте окна, отключите радиоприёмник и GPS-навигатор. Не следует дотрагиваться до любых металлических деталей автомобиля. Очень опасно во время грозы разговаривать по мобильному телефону. Лучше всего во время грозы его тоже выключить. Были случаи, когда входящий звонок становился причиной попадания молнии. Велосипед и мотоцикл в отличие от машины от грозы вас не спасут. Необходимо слезть, уложить транспорт на землю и отойти на расстояние примерно 30 м от него.

В природе существуют разные виды молний: линейные (наземные, внутриоблачные, молнии в верхней атмосфере) и шаровые молнии – светящиеся плавающие в воздухе образования, уникально редкое природное явление. Если природа линейной молнии ясна и ее поведение более предсказуемо, то природа шаровой молнии до сих пор хранит в себе множество тайн. Несмотря на то, что вероятность поражения человека шаровой молнией мала, тем не менее, она представляет серьезную опасность, так как не существует надежных методов и правил защиты от нее.

Поведение шаровой молнии непредсказуемо. Она может неожиданно появляться где угодно, в том числе в закрытых помещениях. Отмечены случаи появления шаровой молнии из телефонной трубки, электрической бритвы, выключателя, розетки, репродуктора. Достаточно часто она проникает в здания через трубы, открытые окна и двери. Известны случаи, когда шаровая молния проникала в помещение через узкие щели и даже замочную скважину. Размеры шаровой молнии могут быть различными: от нескольких сантиметров до нескольких метров. В большинстве случаев шаровая молния легко парит или катится над землей, иногда подскакивая, но может и зависнуть над поверхностью земли. Как утверждают очевидцы, шаровая молния реагирует на ветер, сквозняк, восходящие и нисходящие потоки воздуха. Но это не всегда так: известны случаи, кода шаровая молния никак не реагировала на потоки воздуха.

Шаровая молния может внезапно появиться и так же внезапно исчезнуть, не нанеся вреда человеку или помещению. Например, может залететь в окно и вылететь из помещения через открытую дверь или дымовую трубу, пролетев мимо Вас. При этом следует знать, что всякий контакт с человеком приводит к тяжелым травмам, ожогам, а в большинстве случаев к смертельному исходу. Поэтому, если вы увидели шаровую молнию, безопаснее всего удалиться от нее на максимально возможное расстояние.

Кроме того шаровая молния часто взрывается. Возникающая при этом ударная воздушная волна может травмировать человека или привести к разрушениям. Например, известны случаи взрывов молний в печках, дымоходах, что привело к серьезным разрушениям. Температура внутри шаровой молнии достигает 5000 °С, поэтому она может стать причиной пожара. Статистика поведения шаровой молнии говорит о том, что в 80% случаев взрывы не были опасны, однако тяжелые последствия все-таки возникали в 10% взрывов.

По предложенному методу мы предлагаем вам рассчитать расстояние до грозового разряда и его скорость, если первый гром был слышен через 20 секунд после наблюдения первой молнии, а второй через 15 секунд после наблюдения второй молнии. Время между молниями составляет 1 минуту.

Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы

Тест по физике: физические тела, явления, вещества

Предлагаю вам тест по физике: физические тела, явления, вещества. Тест был опубликован вчера на Яндекс-Дзен канале «Домобуч». Физика у моих подписчиков не такой популярный предмет, как русский язык, поэтому ответили всего 30 человек. Многие ответили верно, но есть и запутавшиеся. Вы тоже можете пройти этот тест, а под картинкой посмотреть ответы и комментарии.

 

Тест по физике: физические тела, явления, вещества

 

Картиночка)

 

Ответы и пояснения

Вопрос № 1

Ответ: физическое тело — это любой предмет.

Физическая величина описывает физическое тело. Не каждое физическое тело можно взять в руки, например, Луну.

 

Вопрос № 2

Ответ: физическую величину можно измерить или вычислить, выразить в соответствующих единицах. Физическая величина описывает свойства физических тел и явлений.

 

Вопрос № 3

Ответ: вертолёт, ножницы, Луна.

  • Алюминий и спирт — это вещества.
  • Снегопад, метель, гром — физические явления.

 

Вопрос № 4

Ответ: ртуть, спирт, алюминий.

  • Вертолёт и Луна — это физические тела.
  • Снегопад, метель, гром — физические явления.

 

Вопрос № 5

Ответ: снегопад, кипение, метель, гром.

  • Алюминий и ртуть — это вещества.
  • Луна и вертолёт — физические тела.

 

Вопрос № 6

Ответ: катится шар, колеблется маятник часов, летит птица.

  • Шелест листвы, раскат грома — это звуковые явления.
  • Плавится свинец, тает снег — это тепловые явления.
  • Сверкает молния, мерцают звёзды — это световые явления.
  • Гроза — это электрическое явление.

 

Вопрос № 7

Ответ: кипит вода, тает снег, плавится свинец.

  • Мерцают звёзды, сверкает молния — это световые явления.
  • Катится шар, летит птица — это механические явления.
  • Раскат грома, шелестит листва — это звуковые явления.
  • Гроза — это электрическое явление.

 

 

Вопрос № 8

Ответ: раскат грома, шелестит листва, пение птиц.

  • Гроза — это электрическое явление.
  • Сверкает молния, мерцают звёзды — световые явления.
  • Кипит вода, плавится свинец — тепловые явления.
  • Катится шар, летит птица — механические явления.

 

Вопрос № 9

Ответ. Электрические явления: включился электрочайник, гроза.

  • Сверкает молния, мерцают звёзды — это световые явления.
  • Плавится свинец, кипит вода — тепловые явления.
  • Катится шар, летит птица — механические явления.
  • Пение птиц, шелестит листва — звуковые явления.

 

Вопрос № 10

Ответ: сверкает молния, мерцают звёзды..

  • Гроза — электрическое явление.
  • Летит птица, катится шар — механические явления.
  • Кипит вода, плавится свинец — тепловые явления.
  • Пение птиц, шелестит листва — звуковые явления.

 

Второй тест по физике ТУТ.

МОЛНИЯ (явление) — это… Что такое МОЛНИЯ (явление)?

МО́ЛНИЯ, гигантский электрический искровой разряд в атмосфере, сопровождающийся обычно яркой вспышкой света и громом (см. ГРОМ). Чаще всего наблюдаются линейные молнии — разряды между грозовыми облаками (см. ОБЛАКА) (внутриоблачные) или между облаками и земной поверхностью (наземные).Процесс развития наземной молнии состоит из несколько стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизуют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью около 5·107 м/с, после чего его движение приостанавливается на несколько десятков мкс, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2·105 м/с. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молний используется для создания молниеотвода (см. МОЛНИЕОТВОД). В заключительной стадии по ионизованному лидером каналу следует обратный, или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч А, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до 108 м/с, а в конце уменьшающейся до 107 м/с. Температура канала при главном разряде может превышать 25 000 °С. Длина канала наземной молнии 1—10 км, диаметр — несколько см. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунд, достигая сотен и тысяч А. Такие молнии называют затяжными, они наиболее часто вызывают пожары.
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со средней скоростью 106 м/с. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создает «ленточную» молнию — светящуюся полосу.
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 50% в умеренных широтах до 90% в экваториальной полосе. Прохождение молний сопровождается изменениями электрических и магнитных полей и радиоизлучением — атмосфериками (см. АТМОСФЕРИКИ). Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолет — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Особый вид молний — шаровая молния (см. ШАРОВАЯ МОЛНИЯ), светящийся сфероид, обладающий большой удельной энергией, образующийся нередко вслед за ударом линейной молнии.

1. Физические тела. Физические явления

1. Укажите, что относится к понятию «физическое тело», а что к понятию «вещество»: самолет, космический корабль, медь, авторучка, фарфор, вода, автомобиль.
Физическое тело — самолет, космический корабль, авторучка.
Вещество — медь, фарфор, вода.

2. Приведите примеры следующих физических тел: а) состоящих из одного и того же вещества; б) состоящих из различных веществ одинакового названия и назначения.
а) Из одного вещества: стол, карандаш, стул — из дерева,
б) Из различных веществ: пластиковая и стеклянная бутылка.

3. Назовите физические тела, которые могут быть сделаны из стекла, резины, древесины, стали, пластмассы.
Стекло: колба лампы, бутылка.
Резина: покрышка, воздушный шарик.
Древесина: дверь, паркет.
Сталь: резец, лезвие ножа.
Пластмасса: корпус шариковой ручки, калькулятора.

4. Укажите вещества, из которых состоят следующие тела: ножницы, стакан, футбольная камера, лопата, карандаш.
Ножницы — сталь; стакан — стекло; футбольная камера — резина; лопата — сталь; карандаш — дерево.

5. Начертите в тетради таблицу и распределите в ней следующие слова: свинец, гром, рельсы, пурга, алюминий, рассвет, буран, Луна, спирт, ножницы, ртуть, снегопад, стол, медь, вертолет, нефть, кипение, метель, выстрел, наводнение.

6. Приведите примеры механических явлений.
Механические явления: падение тела, колебание маятника.

7. Приведите примеры тепловых явлений.
Тепловые явления: таяние снега, кипение воды.

8. Приведите примеры звуковых явлений.
Звуковые явления: гром, свист милиционера.

9. Приведите примеры электрических явлений.
Электрические явления: молния, искра свечи зажигания.

10. Приведите примеры магнитных явлений.
Магнитные явления: взаимодействие двух магнитов, вращение стрелки компаса.

11. Приведите примеры световых явлений.
Световые явления: свет лампочки, северное сияние.

12. Предлагаемую ниже таблицу начертите в тетради и впишите слова, относящиеся к механическим, звуковым, тепловым, электрическим, световым явлениям: шар катится, свинец плавится, холодает, слышны раскаты грома, снег тает, звезды мерцают, вода кипит, наступает рассвет, эхо, плывет бревно, маятник часов колеблется, облака движутся, гроза, летит голубь, сверкает молния, шелестит листва, горит электрическая лампа.

13. Назовите два-три физических явления, которые наблюдаются при выстреле из пушки.
Полет снаряда, звук выстрела и взрыв пороха.

Эксперт БФУ им. И. Канта рассказал о наиболее встречающихся в Калининградской области типах молний

Грозы — нередкое атмосферное явление для летнего периода в Калининградской области.

Термин «гроза» объединяет комплекс атмосферных метеорологических явлений (дождь, шквалистый ветер, молнии, гром). Молния — искровой разряд, возникающий между тучами или между тучей и земной поверхностью. При электрическом разряде выделяется большое количество энергии, затрачивающейся на разогревание воздуха в узком канале, — трассе распространения электрического разряда. Из-за быстрого нагревания воздух резко расширяется и возникает ударная волна. Эта волна воспринимается как звук, называемый громом.

Удар молнии может причинить большие неприятности. Ее разрушающее воздействие обусловлено выделением тепловой энергии, от которой могут загораться или даже разрываться деревья, дома, башни. Для предотвращения поражения молнией на высоких домах и сооружениях устанавливают молниезащиту (иногда, не совсем точно, ее называют громоотводом) — металлические стержни, имеющие надежную токопроводящую связь с землей.

Как рассказал доктор наук, профессор института физико-математических наук и информационных технологий БФУ им. И. Канта Иван Карпов, существует разные типы электрических разрядов — молний, которые наблюдаются как в нижней, так и в верхней атмосфере (выше 50 км).

В нижней атмосфере (тропосфера), как правило, бывают линейные молнии облако-облако (разряд такой молнии происходит между облаками вдоль достаточно узкой траектории — трассы), или молния облако-земля. Причина образования таких молний – накопление электростатического заряда в грозовых облаках Трассы молний видятся как ломаные линии, что определяется локальной электропроводностью атмосферы.

Как отметил Иван Карпов, в Калининградской области чаще всего встречаются линейные молнии. Такие молниевые разряды характерны для нижней атмосферы, и Калининградская область здесь ничем не отличается от остальных регионов.

В верхней атмосфере (выше 50 км) наблюдаются особые виды молний: эльфы, джеты и спрайты. Это те электрические разряды, трассы которых направлены вверх.

 

“В последнее время молниевые разряды в средней и верхней атмосфере (50-120 км) привлекают внимание исследователей. Предполагается, что такие процессы отражают динамику нижних слоев атмосферы и могут служить индикатором метеорологических, сейсмических, тектонических и т.д. событий. Молниевые разряды на высотах ионосферы влияют на локальные характеристики ионосферы. Это может приводить к негативному влиянию на работу спутниковых систем связи, навигации и т.д. Шаровая молния – отдельный вид молнии, природа которой остается загадкой. Такая молния представляет собой движущийся в воздухе светящийся объект в форме шара. По свидетельствам очевидцев, шаровая молния может двигаться по непредсказуемой траектории, разделяться на более мелкие молнии, может взорваться, а может просто неожиданно исчезнуть. Существует множество гипотез о происхождении шаровой молнии, но ни одна пока не признана достоверной. Физические процессы, стабилизирующие горячую плазму (миллионы градусов) в объеме, неизвестны и непонятны. В лабораторных условиях получить шаровую молнию не удается”, — рассказал Иван Карпов.

По словам исследователя, чаще всего воздействию молний подвергаются горы, одиночные здания, высокие деревья, электротехнические сооружения, поскольку электрический разряд «облако-земля» идет по трассе с наиболее высокой электропроводностью (по пути наименьшего сопротивления).

Иван Карпов объяснил, по какой причине зачастую молния бьет в одно и тоже место:

 

 

“Трасса молниевого разряда на трассе «облако-земля» определяется особенностями формирования грозовых облаков и свойствами поверхности. Условия возникновения разряда могут меняться в зависимости от сезона, в то время как свойства поверхности (прежде всего особенности рельефа) изменяются слабо. Поэтому, повторяемость событий может быть высокая”.

Также профессор объяснил, почему раньше грозы сотрясали небо только поздней весной и летом, а сейчас случаются и зимой.

 

 

“Сезонная зависимость связана с естественным годовым ходом изменения атмосферы. При этом причины формирования грозовых облаков во многом связаны с процессами электризации воздуха. Вследствие климатических изменений, антропогенных факторов в атмосфере могут формироваться условия для развития грозовых облаков (накопления электрических зарядов) в необычное время”, — рассказал Иван Карпов.

 

 

По мнению Ивана Карпова, летать на самолетах или передвигаться на автомобиле в грозу достаточно опасно.

 

“Электрические разряды огромной мощности, конечно же, опасны для всех видов транспорта. Правда, люди, понимая физическую природу воздействия электрических разрядов на технику, научились минимизировать их последствия. Однако, конечно же, надо избегать попадания в такие ситуации”, — заявил исследователь.

 

 

Ссылка на оригинал статьи

гроза | Определение, типы, структура и факты

Гроза , сильное кратковременное погодное нарушение, которое почти всегда связано с молнией, громом, плотными облаками, сильным дождем или градом и сильными порывистыми ветрами. Грозы возникают, когда слои теплого влажного воздуха поднимаются большим быстрым восходящим потоком в более прохладные области атмосферы. Там влага, содержащаяся в восходящем потоке, конденсируется, образуя возвышающиеся кучево-дождевые облака и, в конечном итоге, осадки.Столбы охлажденного воздуха затем опускаются к земле, ударяясь о землю сильными нисходящими потоками и горизонтальными ветрами. В то же время электрические заряды накапливаются на частицах облаков (каплях воды и льда). Разряды молнии возникают, когда накопленный электрический заряд становится достаточно большим. Молния нагревает воздух, через который проходит, так интенсивно и быстро, что возникают ударные волны; эти ударные волны слышны как раскаты и раскаты грома. Иногда сильные грозы сопровождаются кружащимися воздушными вихрями, которые становятся достаточно концентрированными и мощными, чтобы образовывать торнадо.

гроза

Гроза с молнией.

© Пол Лэмпард / stock.adobe.com

Британская викторина

Молния: факт или вымысел?

Безопасны ли небоскребы от ударов молнии? Помогают ли кристаллы льда производить молнии? Узнайте больше о самом электрическом явлении в природе в этой викторине.

  • Узнайте, как быстрые восходящие потоки теплого воздуха образуют кучево-дождевые облака, что приводит к проливным дождям и молниям.

    Формирование грозы.

    Encyclopædia Britannica, Inc. См. Все видео для этой статьи
  • Наблюдайте за плотностью вспышек молний в типичный год с самым высоким уровнем в Южной Америке, Африке и Австралазии

    Как показано на анимации, год грозовой активности -round наиболее популярен в континентальных районах тропиков, особенно в Южной Америке, Африке и Австралазии.Удары молний в высоких широтах усиливаются в весенние и летние месяцы (май – сентябрь в северном полушарии и ноябрь – март в южном полушарии).

    Адаптировано из NASA См. Все видео к этой статье

Известно, что грозы случаются почти во всех регионах мира, хотя они редки в полярных регионах и нечасты на широтах выше 50 ° северной широты и 50 ° южной широты. Поэтому умеренный и тропический регионы мира наиболее подвержены грозам.В США районами максимальной грозовой активности являются полуостров Флорида (более 80 грозовых дней в году, а в некоторых районах более 100), побережье Мексиканского залива (60–90 дней в году) и горы Нью-Мексико (50 –80 дней в году). В Центральной Европе и Азии в среднем от 20 до 60 грозовых дней в году. Было подсчитано, что в любой момент в мире происходит около 1800 гроз.

В этой статье рассматриваются два основных аспекта гроз: их метеорология (т.е., их образование, структура и распространение) и их электризация (т. е. генерация молнии и грома). Для отдельного освещения связанных явлений, не описанных в этой статье, см. Торнадо , шаровые молнии, бусовые молнии, а также красные спрайты и синие струи.

Грозовые образования и структура

Вертикальное движение атмосферы

Самые короткие, но сильные возмущения в ветровых системах Земли затрагивают большие области восходящего и нисходящего воздуха.Грозы не являются исключением из этого правила. Говоря техническим языком, считается, что гроза возникает, когда атмосфера становится «неустойчивой к вертикальному движению». Такая нестабильность может возникнуть, когда относительно теплый легкий воздух перекрывается более прохладным и тяжелым воздухом. В таких условиях более холодный воздух имеет тенденцию опускаться, вытесняя более теплый воздух вверх. Если поднимается достаточно большой объем воздуха, образуется восходящий поток (сильный поток поднимающегося воздуха). Если восходящий поток влажный, вода конденсируется и образует облака; конденсация, в свою очередь, высвобождает скрытую тепловую энергию, дополнительно подпитывая восходящее движение воздуха и увеличивая нестабильность.

гроза: структура

Когда атмосфера становится достаточно нестабильной, чтобы сформировать большие мощные восходящие и нисходящие потоки (как показано красными и синими стрелками), образуется возвышающееся грозовое облако. Иногда восходящие потоки бывают достаточно сильными, чтобы расширить верхнюю часть облака до тропопаузы, границы между тропосферой (или нижним слоем атмосферы) и стратосферой. Щелкните значки в левой части рисунка, чтобы просмотреть иллюстрации других явлений, связанных с грозами.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Когда в нестабильной атмосфере инициируются восходящие движения воздуха, поднимающиеся частицы теплого воздуха ускоряются по мере того, как они поднимаются через более прохладную окружающую среду, потому что они имеют меньшую плотность и большую плавучесть. Это движение может создать модель конвекции, при которой тепло и влага транспортируются вверх, а более холодный и сухой воздух транспортируется вниз.Области атмосферы, где вертикальное движение относительно велико, называются ячейками, а когда они переносят воздух в верхнюю тропосферу (самый нижний слой атмосферы), они называются глубокими ячейками. Грозы возникают, когда глубокие ячейки влажной конвекции организуются и сливаются, а затем производят осадки и, в конечном итоге, молнии и гром.

Восходящие движения могут быть инициированы в атмосфере разными способами. Распространенным механизмом является нагревание поверхности земли и прилегающих слоев воздуха солнечным светом.Если поверхностного нагрева достаточно, температура нижних слоев воздуха будет расти быстрее, чем верхних слоев, и воздух станет нестабильным. Способность земли быстро нагреваться — вот почему большинство гроз формируется над сушей, а не над океанами. Неустойчивость также может возникать, когда слои холодного воздуха нагреваются снизу после того, как они перемещаются по теплой поверхности океана или по слоям теплого воздуха. Горы также могут вызывать восходящее атмосферное движение, действуя как топографические барьеры, заставляющие подниматься ветры.Горы также действуют как высокоуровневые источники тепла и нестабильности, когда их поверхности нагреваются Солнцем.

мировых моделей частоты грозы

Грозы чаще всего происходят в тропических широтах над сушей, где воздух, скорее всего, быстро нагреется и образует сильные восходящие потоки.

Encyclopædia Britannica, Inc.

Огромные облака, связанные с грозами, обычно начинаются как изолированные кучевые облака (облака, образованные конвекцией, как описано выше), которые вертикально развиваются в купола и башни.Если имеется достаточная нестабильность и влажность, а фоновый ветер благоприятен, тепло, выделяемое за счет конденсации, еще больше усилит плавучесть поднимающейся воздушной массы. Кучевые облака будут расти и сливаться с другими ячейками, образуя огромное кучевое облако, простирающееся еще выше в атмосферу (6000 метров [20 000 футов] или более над поверхностью). В конечном итоге образуется кучево-дождевое облако с его характерной верхней частью в форме наковальни, вздымающимися сторонами и темным основанием. Кучево-дождевые облака обычно производят большое количество осадков.

Что вызывает звук грома?

Ответ

Гром возникает из-за быстрого расширения воздуха, окружающего путь разряда молнии.

Муссонный шторм, вызвавший разветвленную молнию в Центре посетителей Красных холмов в национальном парке Сагуаро в Аризоне. Пит Грегуар, фотограф, NOAA Weather in Focus Photo Contest 2015. Библиотека фотографий NOAA.

От облаков до ближайшего дерева или крыши молнии требуется всего несколько тысячных долей секунды, чтобы разлететься в воздухе.Обычно говорят, что громкий гром, который следует за разрядом молнии, исходит от самого молнии. Однако ворчание и рычание, которое мы слышим во время грозы, на самом деле происходят из-за быстрого расширения воздуха, окружающего молнию.

Когда молния соединяется с землей из облаков, второй удар молнии возвратится от земли к облакам по тому же каналу, что и первый удар. Тепло от электричества этого обратного хода повышает температуру окружающего воздуха примерно до 27 000 ° C (48 632 F °).Быстрое повышение температуры приводит к быстрому увеличению давления воздуха, которое в 10-100 раз превышает нормальное атмосферное давление. Под таким давлением нагретый воздух вырывается наружу из канала, сжимая окружающий воздух. Когда нагретый воздух расширяется, давление падает, воздух охлаждается и сжимается. Результатом является ударная волна с громким грохотом, разносящимся во всех направлениях.

Огромное облако предвещает грозу над Грумом, крошечным поселением вдоль старого U.С. Маршрут 66 в Техасском попрошайничестве Кэрол М. Хайсмит, фотограф, 2014. Отдел эстампов и фотографий, Библиотека Конгресса.

Поскольку электричество проходит по кратчайшему пути, большинство разрядов молний близки к вертикали. Ударные волны, расположенные ближе к земле, сначала достигают вашего уха, а затем ударные волны падают сверху. Вертикальные молнии часто слышны в одном долгом грохоте. Однако, если молния раздваивается, звуки меняются. Ударные волны от разных ответвлений молний отражаются друг от друга, от низко нависающих облаков и близлежащих холмов, создавая серию более низких, непрерывных грохотов грома.

Молния. Оклахома, 2009. Коллекция Национальной лаборатории сильных штормов, фото-библиотека NOAA.

Интересные факты о громе

  • Чтобы определить, насколько близко молния, посчитайте секунды между вспышкой и ударом грома. Каждая секунда соответствует примерно 300 м (984,25 фута).
  • Гром слышен не только во время грозы. Нечасто, но не редко, слышать гром, когда идет снег.
  • Молния не всегда создает гром.В апреле 1885 года пять молний ударили в памятник Вашингтону во время грозы, но грома не было слышно.
Линия застройки кучево-дождевых гроз. Вид из-за шторма на ранних этапах разработки. Национальная коллекция лаборатории сильных штормов, фотоархив NOAA.

Опубликовано: 17.06.2021. Автор: Справочная секция по науке, Библиотека Конгресса

Что вызывает молнию?

Гроза в сельской местности.Кредит: noaanews.noaa.gov

Гром и молния. Когда дело доходит до сил природы, немногие вещи вызывают столько страха, благоговения или восхищения, не говоря уже о легендах, мифах и религиозных представлениях. Как и все в естественном мире, то, что изначально рассматривалось Богами как действие (или другие сверхъестественные причины), с тех пор стало признано естественным явлением.

Но, несмотря на все, что люди узнали на протяжении веков, когда дело доходит до молнии, остается некоторая загадка.Эксперименты проводились со времен Бенджамина Франклина; однако мы по-прежнему сильно полагаемся на теории о том, как ведет себя освещение.

Описание:

По определению, молния — это внезапный электростатический разряд во время грозы. Этот разряд позволяет заряженным областям в атмосфере временно уравновесить себя, когда они ударяются об объект на земле. Хотя молния всегда сопровождается звуком грома, далекие молнии можно увидеть, но они находятся слишком далеко, чтобы можно было услышать гром.

Типы:

Молния может принимать одну из трех форм, которые определяются тем, что находится на «конце» канала ответвления (т. Е. Молния). Например, существует внутриоблачное освещение (IC), которое происходит между электрически заряженными областями облака; освещение облака в облако (CC), когда оно возникает между одним функциональным грозовым облаком и другим; и молния облако-земля (CG), которая в основном возникает в грозовом облаке и заканчивается на поверхности Земли (но также может возникать в обратном направлении).

Внутриоблачная молния чаще всего возникает между верхней (или «наковальней») частью и нижней частью данной грозы. В таких случаях наблюдатель может видеть только вспышку света, не слыша грома. Здесь часто применяется термин «тепловая молния» из-за связи между ощущаемой на месте теплотой и удаленными вспышками молнии.

В случае молнии «облако-облако» заряд обычно исходит из-под наковальни или внутри нее и карабкается через верхние облачные слои во время грозы, обычно генерируя разряд молнии с множеством ответвлений.

Облако-земля (CG) — самый известный тип молнии, хотя он является третьим по распространенности — на него приходится примерно 25% случаев во всем мире. В этом случае молния принимает форму разряда между грозовым облаком и землей, обычно имеет отрицательную полярность и инициируется ступенчатой ​​ветвью, движущейся вниз от облака.

Молния

CG является наиболее известной, потому что, в отличие от других форм молнии, она заканчивается на физическом объекте (чаще всего на Земле) и, следовательно, поддается измерению с помощью инструментов.Кроме того, он представляет наибольшую угрозу для жизни и имущества, поэтому понимание его поведения рассматривается как необходимость.

Недвижимость:

Освещение возникает, когда в атмосфере возникают восходящие и нисходящие потоки ветра, создавая механизм зарядки, который разделяет электрические заряды в облаках, оставляя отрицательные заряды внизу и положительные вверху. Поскольку заряд в нижней части облака продолжает расти, разность потенциалов между облаком и землей, которая заряжена положительно, также растет.

Когда пробой в нижней части облака создает карман положительного заряда, образуется канал электростатического разряда, который начинает двигаться вниз с шагом в десятки метров в длину. В случае молнии IC или CC этот канал затем направляется в другие карманы областей положительных зарядов. В случае ударов КГ ступенчатый лидер притягивается к положительно заряженной земле.

Многие факторы влияют на частоту, распределение, силу и физические свойства «типичной» молнии в определенном регионе мира.К ним относятся высота земли, широта, преобладающие ветровые течения, относительная влажность, близость к теплым и холодным водоемам и т. Д. В определенной степени соотношение между IC, CC и CG молнией также может варьироваться в зависимости от сезона в средних широтах.

Около 70% молний происходит над сушей в тропиках, где атмосферная конвекция наиболее высока. Это происходит как из-за смеси более теплых и более холодных воздушных масс, так и из-за различий в концентрациях влаги, и обычно это происходит на границах между ними.В тропиках, где уровень замерзания, как правило, выше в атмосфере, только 10% вспышек молний являются компьютерными. На широте Норвегии (около 60 ° северной широты), где точка замерзания ниже, 50% молний приходится на КГ.

Эффекты:

В общем, молния оказывает на окружающую среду три измеримых воздействия. Во-первых, это прямое воздействие самого удара молнии, которое может привести к повреждению конструкции или даже физическому ущербу. Когда молния попадает в дерево, оно испаряет сок, что может привести к взрыву ствола или отрыву больших ветвей и падению на землю.

Когда молния ударяет в песок, почва, окружающая плазменный канал, может плавиться, образуя трубчатые структуры, называемые фульгуритами. Здания или высокие сооружения, пораженные молнией, могут быть повреждены, поскольку молния ищет непредусмотренные пути к земле. И хотя примерно 90% людей, пораженных молнией, выживают, люди или животные, пораженные молнией, могут получить серьезные травмы из-за повреждения внутренних органов и нервной системы.

Гром также является прямым результатом электростатического разряда. Поскольку плазменный канал перегревает воздух в непосредственной близости от него, газообразные молекулы подвергаются быстрому увеличению давления и, таким образом, расширяются наружу от молнии, создавая слышимую ударную волну (иначе.гром). Поскольку звуковые волны распространяются не от одного источника, а по длине пути молнии, различные расстояния до источника могут вызывать эффект качения или грохота.

Излучение высокой энергии также возникает в результате удара молнии. К ним относятся рентгеновские лучи и гамма-лучи, которые были подтверждены посредством наблюдений с использованием электрического поля и детекторов рентгеновского излучения, а также космических телескопов.

Исследования:

Первое систематическое и научное исследование молнии было проведено Бенджамином Франклином во второй половине 18 века.До этого ученые выяснили, как электричество можно разделить на положительные и отрицательные заряды и сохранить. Они также отметили связь между искрами, производимыми в лаборатории, и молнией.

Франклин предположил, что облака электрически заряжены, из чего следовало, что сама молния была электрической. Первоначально он предложил проверить эту теорию, поместив железный стержень рядом с заземленным проводом, который будет удерживаться на месте изолированной восковой свечой. Если бы облака были электрически заряжены, как он ожидал, то между железным стержнем и заземленным проводом прыгали искры.

В 1750 году он опубликовал предложение, согласно которому воздушный змей будет запускаться во время шторма для привлечения молнии. В 1752 году Томас Франсуа Д’Алибар успешно провел эксперимент во Франции, но использовал 12-метровый железный стержень вместо воздушного змея для образования искр. К лету 1752 года Франклин, как полагают, сам провел эксперимент во время сильного шторма, обрушившегося на Филадельфию.

Для своей усовершенствованной версии эксперимента Фрэнкинг атаковал ключ к воздушному змею, который был соединен влажной нитью с изолирующей шелковой лентой, обернутой вокруг суставов руки Франклина.Между тем тело Франклина обеспечивало проводящий путь для электрических токов к земле. Франклин не только показал, что грозы содержат электричество, но и сделал вывод о том, что нижняя часть грозы, как правило, также была отрицательно заряжена.

Незначительный прогресс был достигнут в понимании свойств молнии до конца 19 века, когда фотографии и спектроскопические инструменты стали доступны для исследования молний. В этот период многие ученые использовали фотографию с временным разрешением для идентификации отдельных ударов молнии, которые образуют разряд молнии на землю.

Множественные пути молнии из облака в облако, Свифтс-Крик, Австралия. Кредит: fir0002 / flagstaffotos.com.au

Исследования молний в наше время восходят к работе C.T.R. Уилсон (1869 — 1959), который первым применил измерения электрического поля для оценки структуры грозовых зарядов, участвующих в грозовых разрядах. Уилсон также получил Нобелевскую премию за изобретение Туманной камеры, детектора частиц, используемого для определения присутствия ионизированного излучения.

К 1960-м годам интерес вырос благодаря жесткой конкуренции, вызванной космической эрой. Когда космические корабли и спутники отправлялись на орбиту, были опасения, что молния может создать угрозу для аэрокосмических аппаратов и твердотельной электроники, используемой в их компьютерах и инструментах. Кроме того, улучшенные возможности измерений и наблюдений стали возможны благодаря усовершенствованию космических технологий.

В дополнение к наземному обнаружению молний, ​​на борту спутников было сконструировано несколько приборов для наблюдения за распределением молний.К ним относятся оптический детектор переходных процессов (OTD) на борту спутника OrbView-1, запущенного 3 апреля 1995 г., и последующий датчик изображения молнии (LIS) на борту TRMM, запущенный 28 ноября 1997 г.

Вулканическая молния:

Вулканическая активность может создавать благоприятные для молнии условия несколькими способами. Например, мощный выброс огромного количества материала и газов в атмосферу создает плотный шлейф из сильно заряженных частиц, который создает идеальные условия для молнии.Кроме того, плотность золы и постоянное движение в шлейфе постоянно вызывают электростатическую ионизацию. Это, в свою очередь, приводит к частым и мощным вспышкам, поскольку шлейф пытается нейтрализовать себя.

Этот тип грозы часто называют «грязной грозой» из-за высокого содержания твердого материала (золы). На протяжении всей истории было зарегистрировано несколько случаев вулканических молний. Например, во время извержения Везувия в 79 году нашей эры Плиний Младший заметил несколько мощных и частых вспышек, происходящих вокруг вулканического шлейфа.

Внеземная молния:

Частота ударов молний по всему миру, по данным НАСА. Предоставлено: Википедия / Citynoise.

Молния наблюдалась в атмосферах других планет нашей Солнечной системы, таких как Венера, Юпитер и Сатурн. Что касается Венеры, то первые признаки того, что молнии могут присутствовать в верхних слоях атмосферы, были обнаружены советскими миссиями «Венера» и «Пионер» США в 1970-х и 1980-х годах.Радиоимпульсы, зарегистрированные космическим аппаратом Venus Express (в апреле 2006 г.), были подтверждены как происхождение от молнии на Венере.

Грозы, похожие на земные, наблюдались на Юпитере. Считается, что они являются результатом влажной конвекции в тропосфере Юпитера, где конвективные шлейфы переносят влажный воздух из глубин в верхние части атмосферы, где он затем конденсируется в облака размером около 1000 км.

Серия ударов молний, ​​снятая камерой Nightpod на борту МКС над Римом в 2012 году.Предоставлено: ESA / NASA / André Kuipers.

Изображение ночного полушария Юпитера, полученное Галилеем в 1990 году и космическим кораблем Кассини в декабре 2000 года, показало, что штормы всегда связаны с молниями на Юпитере. Хотя удары молнии в среднем в несколько раз мощнее, чем на Земле, они, по-видимому, менее часты. Несколько вспышек были обнаружены в полярных регионах, что сделало Юпитер второй известной планетой после Земли, на которой наблюдаются полярные молнии.

Освещение также наблюдалось на Сатурне. Первый случай произошел в 2010 году, когда космический зонд «Кассини» обнаружил вспышки на ночной стороне планеты, что совпало с обнаружением мощных электростатических разрядов. В 2012 году изображения, сделанные зондом Кассини в 2011 году, показали, что массивный шторм, охвативший северное полушарие, также генерировал мощные вспышки молний.

  • В результате удара молнии на песчаном участке образовался фульгерит.Кредит: blogs.discovermagazine.com
  • Вулкан Колима (Volcán de Colima) на снимке 29 марта 2015 года с молнией. Предоставлено: Сезар Канту.
  • Художественная концепция грозы Венеры. Предоставлено: НАСА.

Ученый ищет новые идеи для изучения молнии

Ссылка : Что вызывает молнию? (2015, 10 июля) получено 15 июля 2021 г. с https: // физ.org / news / 2015-07-lightning.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Суровая погода 101: Основные сведения о молниях

Суровая погода 101

Основы Lightning

Что такое молния?
Молния — это гигантская электрическая искра в атмосфере между облаками, воздухом или землей.На ранних стадиях развития воздух действует как изолятор между положительными и отрицательными зарядами в облаке и между облаком и землей. Когда противоположные заряды накапливаются достаточно, эта изолирующая способность воздуха разрушается, и происходит быстрый разряд электричества, который мы называем молнией. Вспышка молнии временно выравнивает заряженные области в атмосфере до тех пор, пока противоположные заряды не накопятся снова.

Молния может возникать между противоположными зарядами в грозовом облаке (внутриоблачная молния) или между противоположными зарядами в облаке и на земле (молния облако-земля).

Молния — одно из старейших наблюдаемых природных явлений на Земле. Его можно увидеть в извержениях вулканов, чрезвычайно интенсивных лесных пожарах, ядерных взрывах на поверхности, сильных метелях, сильных ураганах и, очевидно, в грозах. .

Подробнее об исследовании молний NSSL читайте здесь.
Что вызывает гром?
Молния вызывает гром! Энергия из канала молнии нагревает воздух на короткое время примерно до 50 000 градусов по Фаренгейту, что намного горячее, чем поверхность Солнца.Это приводит к тому, что воздух взрывается наружу. Огромное давление в исходной ударной волне, направленной наружу, быстро уменьшается с увеличением расстояния и в пределах десяти ярдов или около того становится достаточно маленьким, чтобы восприниматься как звук, который мы называем громом.

Гром можно услышать на расстоянии до 25 миль от разряда молнии, но частота звука меняется с расстоянием от каналов молнии, которые его производят, потому что более высокие частоты быстрее поглощаются воздухом. Очень близко к молнии, первый гром, который вы слышите, исходит из ближайших каналов, которые производят рвущий звук, потому что этот гром содержит высокие частоты.Через несколько секунд вы слышите резкий щелчок или громкий треск из каналов молнии чуть дальше, а через несколько десятков секунд гром из самой отдаленной части вспышки стихает до низкочастотного грохота.

Поскольку свет распространяется по воздуху примерно в миллион раз быстрее, чем звук, вы можете использовать гром, чтобы оценить расстояние до молнии. Просто посчитайте количество секунд от момента появления вспышки до момента, когда вы услышите молнию. Звук распространяется примерно на одну пятую мили в секунду или одну треть километра в секунду, поэтому деление количества секунд на 5 дает количество миль до вспышки, а деление на 3 дает количество километров.

Куда бьет молния?
Большинство, если не все, вспышки молний, ​​вызванные штормами, начинаются внутри облака. Если вспышка молнии ударит по земле, канал будет направлен вниз к поверхности. Когда он проходит менее чем примерно в сотне ярдов от земли, такие объекты, как деревья, кусты и здания, начинают посылать искры, встречая его. Когда одна из искр соединяет развивающийся вниз канал, мощный электрический ток быстро проходит по каналу к объекту, который произвел искру.Высокие объекты, такие как деревья и небоскребы, с большей вероятностью, чем окружающая земля, произведут одну из соединяющих искр, и поэтому с большей вероятностью будут поражены молнией. Горы также являются хорошими целями. Однако это не всегда означает, что высокие предметы будут поражены. Молния может ударить по земле в открытом поле, даже если линия деревьев находится рядом.
Что вызывает молнию?
Создание молнии — сложный процесс. Обычно мы знаем, какие условия необходимы для возникновения молнии, но до сих пор ведутся споры о том, как именно облако накапливает электрические заряды и как образуется молния.Ученые считают, что первоначальный процесс создания областей заряда во время грозы включает в себя мелкие частицы града, называемые крупой, которые составляют примерно от четверти миллиметра до нескольких миллиметров в диаметре и растут за счет сбора еще более мелких капель переохлажденной жидкости. Когда эти частицы крупы сталкиваются и отскакивают от более мелких частиц льда, крупа приобретает один знак заряда, а более мелкая частица льда приобретает другой знак заряда. Поскольку более мелкие частицы льда поднимаются в восходящем потоке быстрее, чем частицы крупы, заряд на частицах льда отделяется от заряда на частицах крупы, и заряд на частицах льда накапливается над зарядом на частицах крупы.

Лабораторные исследования показывают, что крупа приобретает положительный заряд при температурах немного ниже 32 градусов по Фаренгейту, но получает отрицательный заряд при более низких температурах, немного выше во время шторма. Ученые считают, что две области с наибольшим зарядом в большинстве штормов вызваны в основном крупой, несущей отрицательный заряд в середине шторма, и частицами льда, несущими положительный заряд в верхней части шторма. Однако небольшая область положительного заряда часто находится ниже области основного отрицательного заряда из-за того, что крупа набирает положительный заряд на более низких, более теплых высотах.Небольшие частицы льда, которые столкнулись с отрицательной крупой в нижней части, могут внести положительный заряд в середину шторма.

Концептуальная модель, разработанная NSSL и университетскими учеными, показывает распределение электрического заряда внутри глубокой конвекции (грозы). В основном восходящем потоке (внутри и над красной стрелкой) есть четыре области основных зарядов. В конвективной области, но за пределами вытяжки (внутри и над синей стрелкой) имеется более четырех областей заряда.

Вы можете узнать больше о молниях в онлайн-школе погоды JetStream Национальной службы погоды.

Как электрический заряд распространяется во время грозы?

Распределение заряда в грозовых облаках [+]

Концептуальная модель, разработанная NSSL и университетскими учеными, показывает распределение электрического заряда внутри глубокой конвекции (грозы). В основном восходящем потоке (внутри и над красной стрелкой) есть четыре области основных зарядов.В конвективной области, но за пределами вытяжки (внутри и над синей стрелкой) имеется более четырех областей заряда.

Исследователи NSSL используют трехмерную облачную модель для исследования полного жизненного цикла гроз. Модель показала, как крупа или другие капли могут помочь сформировать области с более низким зарядом во время шторма.

Команда

NSSL запускает инструментальный метеозонд для изучения молний в северной Флориде. [+]

Исследователи NSSL были пионерами в области запуска метеозонд с инструментами во время грозы.Эта возможность позволила NSSL собирать данные о погоде в непосредственной близости от торнадо и сухих линий, а также во время грозы, собирая критически необходимые наблюдения в условиях, близких к грозам. Кроме того, эти мобильные лаборатории и системы воздухоплавания предоставили первые вертикальные профили электрических полей внутри грозы, что привело к новой концептуальной модели электрических структур в конвективных бурях.

Один из способов проверки своих теорий исследователями — это измерения сильных гроз в полевых условиях и последующий анализ результатов.Крупномасштабные полевые эксперименты с участием многих инструментов, в первую очередь сосредоточенных на атмосферном электричестве, включают в себя эксперимент по глубоким конвективным облакам и химии (DC3), исследование электрификации MCS и поляриметрического радара, исследование сильной грозовой электрификации и осадков и эксперимент по электрификации грозы и молниям.

Более суровая погода 101:
← Часто задаваемые вопросы о наводнениях Типы молний → Учебник по физике

: Lightning

Пожалуй, самым известным и мощным проявлением электростатики в природе является гроза.Грозы неизбежны от внимания человечества. Их никогда не приглашали, никогда не планировали и никогда не оставляли незамеченными. Ярость удара молнии разбудит человека посреди ночи. Они отправляют детей вбегать в родительские спальни, требуя уверенности в том, что все будет в безопасности. Ярость удара молнии способна прервать полуденные разговоры и дела. Они — частая причина отмены игр с мячом и прогулок в гольф. Дети и взрослые одинаково толпятся у окон, чтобы наблюдать за появлением молний в небе, трепещущие перед мощью статических разрядов.Действительно, гроза — это самое яркое проявление электростатики в природе.

В этой части Урока 4 мы обсудим два вопроса:

  • Какова причина и механизм поражения молнии?
  • Как громоотводы служат для защиты зданий от разрушительного воздействия удара молнии?

Накопление статического заряда в облаках

Научное сообщество давно размышляет о причинах ударов молнии.Даже сегодня это предмет многочисленных научных исследований и теоретизирования. Детали того, как облако становится статически заряженным, не совсем понятны (на момент написания этой статьи). Тем не менее, есть несколько теорий, которые имеют большой смысл и демонстрируют многие концепции, ранее обсуждавшиеся в этом разделе Физического класса.

Предвестником любого удара молнии является поляризация положительных и отрицательных зарядов внутри грозового облака. Известно, что вершины грозовых облаков приобретают избыток положительного заряда, а низы грозовых облаков приобретают избыток отрицательного заряда.Два механизма кажутся важными для процесса поляризации. Один из механизмов включает разделение заряда посредством процесса, который напоминает зарядку трением. Известно, что облака содержат бесчисленные миллионы взвешенных капель воды и частиц льда, которые движутся и кружатся в турбулентном режиме. Дополнительная вода из земли испаряется, поднимается вверх и образует скопления капель по мере приближения к облаку. Эта поднимающаяся вверх влага сталкивается с каплями воды в облаках. При столкновении электроны отрываются от поднимающихся капель, вызывая отделение отрицательных электронов от положительно заряженной капли воды или кластера капель.

Второй механизм, который способствует поляризации грозового облака, связан с процессом замораживания. Повышение влажности сопровождается более низкими температурами на больших высотах. Эти более низкие температуры вызывают замерзание скопления капель воды. Замороженные частицы имеют тенденцию более плотно сгруппироваться и образуют центральные области кластера капель. Замороженная часть скопления поднимающейся влаги становится отрицательно заряженной, а внешние капли приобретают положительный заряд.Воздушные потоки внутри облаков могут оторвать внешние части скоплений и унести их вверх, к вершине облаков. Замороженная часть капель с их отрицательным зарядом имеет тенденцию тяготеть к нижней части грозовых облаков. Таким образом, облака становятся еще более поляризованными.

Считается, что эти два механизма являются основными причинами поляризации грозовых облаков. В конце концов, грозовое облако становится поляризованным: положительные заряды переносятся в верхние части облаков, а отрицательные части тяготеют к нижней части облаков.Не менее важное влияние на поверхность Земли оказывает поляризация облаков. Электрическое поле облака распространяется через окружающее его пространство и вызывает движение электронов на Земле. Электроны на внешней поверхности Земли отталкиваются нижней поверхностью отрицательно заряженного облака. Это создает противоположный заряд на поверхности Земли. Здания, деревья и даже люди могут испытывать накопление статического заряда, поскольку электроны отталкиваются дном облака. С облаком, поляризованным на противоположности, и с положительным зарядом, индуцированным на поверхности Земли, все готово для второго акта драмы удара молнии.

Механика удара молнии

По мере увеличения накопления статического заряда в грозовом облаке электрическое поле, окружающее облако, становится сильнее. Обычно воздух, окружающий облако, был бы достаточно хорошим изолятором, чтобы предотвратить разряд электронов на Землю. Тем не менее, сильные электрические поля, окружающие облако, способны ионизировать окружающий воздух и делать его более проводящим.Ионизация заключается в отрыве электронов от внешних оболочек молекул газа. Таким образом, молекулы газа, из которых состоит воздух, превращаются в суп из положительных ионов и свободных электронов. Изолирующий воздух превращается в проводящую плазму . Способность электрических полей грозового облака преобразовывать воздух в проводник делает возможной передачу заряда (в виде молнии) от облака к земле (или даже к другим облакам).

Удар молнии начинается с разработки шагового лидера .Избыточные электроны на дне облака начинают путешествие через проводящий воздух к земле со скоростью до 60 миль в секунду. Эти электроны движутся зигзагообразными путями к земле, разветвляясь в разных местах. Переменные, которые влияют на детали фактического пути, малоизвестны. Считается, что присутствие примесей или частиц пыли в различных частях воздуха может создавать области между облаками и землей, которые обладают большей проводимостью, чем другие области. По мере роста ступенчатого лидера он может освещаться пурпурным свечением, характерным для молекул ионизированного воздуха.Тем не менее, лидер — это не настоящий удар молнии; он просто обеспечивает дорогу между облаком и Землей, по которой в конечном итоге будет перемещаться молния.

Когда электроны ступенчатого лидера приближаются к Земле, происходит дополнительное отталкивание электронов вниз от поверхности Земли. Количество положительного заряда, находящегося на поверхности Земли, становится еще больше. Этот заряд начинает мигрировать вверх через здания, деревья и людей в воздух.Этот восходящий восходящий положительный заряд — известный как стример — приближается к ступенчатому лидеру в воздухе над поверхностью Земли. Лента может встретиться с лидером на высоте, эквивалентной длине футбольного поля. После установления контакта между косой и лидером намечается полный проводящий путь и начинается молния. Точка контакта между наземным зарядом и облачным зарядом быстро поднимается вверх со скоростью до 50 000 миль в секунду. Целый миллиард триллионов электронов могут пройти этот путь менее чем за миллисекунду.За этим начальным ударом следует несколько последовательных вторичных ударов или скачков заряда. Эти вторичные выбросы разнесены во времени так близко, что могут выглядеть как один удар. Огромный и быстрый поток заряда по этому пути между облаком и Землей нагревает окружающий воздух, заставляя его сильно расширяться. Расширение воздуха создает ударную волну, которую мы наблюдаем как гром.

Молниеотводы и другие средства защиты

Высокие здания, фермерские дома и другие строения, восприимчивые к ударам молнии, часто оснащены громоотводами .Крепление заземленного громоотвода к зданию — это защитная мера, которая предпринимается для защиты здания в случае удара молнии. Первоначально концепция громоотвода была разработана Беном Франклином. Франклин предположил, что молниеотводы должны состоять из заостренного металлического столба, который поднимается вверх над зданием, которое он предназначен для защиты. Франклин предположил, что громоотвод защищает здание одним из двух способов. Во-первых, стержень служит для предотвращения разряда молнии заряженным облаком.Во-вторых, громоотвод служит для безопасного отвода молнии на землю в том случае, если облако действительно разряжает свою молнию с помощью болта. Теории Франклина о работе громоотводов существуют уже несколько столетий. И только в последние десятилетия научные исследования предоставили доказательства, подтверждающие, как они действуют для защиты зданий от повреждений молнией.

Первую из двух предложенных Франклином теорий часто называют теорией рассеяния молнии .Согласно теории, использование громоотвода на здании защищает здание, предотвращая удар молнии. Идея основана на том принципе, что напряженность электрического поля вокруг заостренного объекта велика. Сильные электрические поля, окружающие заостренный предмет, служат для ионизации окружающего воздуха, тем самым повышая его проводящую способность. Теория диссипации утверждает, что по мере приближения грозового облака между статически заряженным облаком и громоотводом устанавливается проводящий путь.Согласно теории, статические заряды постепенно перемещаются по этому пути к земле, что снижает вероятность внезапного и взрывного разряда. Сторонники теории рассеяния молнии утверждают, что основная роль молниеотвода — разрядить облако в течение более длительного периода времени, предотвращая, таким образом, чрезмерное накопление заряда, характерное для удара молнии.

Вторая из предложенных Франклином теорий о работе громоотвода является основой теории отведения молнии .Теория отвода молнии утверждает, что молниеотвод защищает здание, обеспечивая проводящий путь заряда к Земле. Громоотвод обычно прикрепляют толстым медным кабелем к заземляющему стержню, который закапывают в землю внизу. Внезапный разряд из облака будет направлен к поднятому громоотводу, но безопасно направлен на Землю, что предотвратит повреждение здания. Громоотвод, присоединенный к нему кабель и заземляющий полюс обеспечивают путь с низким сопротивлением от области над зданием к земле под ним.Отводя заряд через систему молниезащиты, здание избавляется от повреждений, связанных с прохождением через него большого количества электрического заряда.

Исследователи молний в настоящее время в целом убеждены, что теория рассеяния молнии дает неточную модель того, как работают громоотводы. Действительно, кончик громоотвода способен ионизировать окружающий воздух и делать его более проводящим. Однако этот эффект распространяется только на несколько метров над кончиком громоотвода.Несколько метров повышенной проводимости над кончиком стержня не способны разряжать большое облако, простирающееся на несколько километров. К сожалению, в настоящее время нет научно проверенных методов предотвращения молний. Более того, недавние полевые исследования показали, что кончик молниеотвода не нужно резко заострять, как предлагал Бен Франклин. Было обнаружено, что громоотводы с тупым концом более восприимчивы к ударам молнии и, таким образом, обеспечивают более вероятный путь разряда заряженного облака.При установке молниеотвода на здание в качестве меры молниезащиты обязательно, чтобы стержень был приподнят над зданием и соединен проводом с низким сопротивлением с землей.


Проверьте свое понимание

Используйте свое понимание, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

1. ИСТИНА или ЛОЖЬ:

Наличие громоотводов на крыше зданий не позволяет облаку со статическим зарядом передать свой заряд в здание.

2. ИСТИНА или ЛОЖЬ:

Если вы поместите громоотвод на крышу своего дома, но не заземлите его, то ваш дом все равно будет в безопасности в маловероятном случае удара молнии.

Статическое электричество 4: Статическое электричество и молния

Фото: Clipart.ком

Назначение

Чтобы помочь учащимся понять концепции, связанные со статическим электричеством, на единственном примере: молния.


Контекст

Этот урок является первым из серии из четырех частей, посвященных статическому электричеству. Эти уроки призваны помочь учащимся понять, что статическое электричество — это явление, связанное с положительными и отрицательными зарядами.

Понимание статического электричества должно начинаться с концепции, что вся материя состоит из атомов, а все атомы состоят из субатомных частиц, среди которых есть заряженные частицы, известные как электроны и протоны.Протоны несут положительный заряд (+), а электроны — отрицательный заряд (-). Число электронов в атоме — от одного до примерно 100 — совпадает с числом заряженных частиц или протонов в ядре и определяет, как атом будет связываться с другими атомами, образуя молекулы. Электрически нейтральные частицы (нейтроны) в ядре увеличивают его массу, но не влияют на количество электронов и поэтому почти не влияют на связи атома с другими атомами (его химическое поведение).

Чтобы лучше понять статическое электричество, вы должны помочь своим ученикам установить связь между их повседневным опытом работы со статическим электричеством, например, молнией, получением сотрясений после перетасовки по ковру, снятием с себя одежды, которая цепляется друг за друга. фен, причесывание волос зимой — со статическими упражнениями, проводимыми в классе.Попросите их попытаться описать и объяснить свой повседневный опыт работы со статикой в ​​терминах, которые они изучают: отталкивание, притяжение, статический заряд, перенос электронов. Важно, чтобы учащиеся усвоили концепцию, согласно которой противоположно заряженные объекты притягиваются друг к другу, а одноименные заряженные объекты отталкиваются. Менее важно то, что они могут вспомнить, какие материалы имеют тенденцию к накоплению отрицательного или положительного заряда.

Когда два разных материала вступают в тесный контакт, например, войлок трется о воздушный шар или две воздушные массы в грозовом облаке, электроны могут переходить от одного материала к другому.Когда это происходит, в одном материале оказывается избыток электронов, и он становится отрицательно заряженным, в то время как другой в конечном итоге испытывает недостаток электронов и становится положительно заряженным. Это накопление несбалансированных зарядов на объектах приводит к явлениям, которые мы обычно называем статическим электричеством.

Когда учащиеся только начинают понимать атомы, они не могут уверенно проводить различие между атомами и молекулами. Студенты часто приходят к мысли, что атомы каким-то образом просто заполняют материю, а не к правильному представлению о том, что атомы являются материей.У учеников средней школы также есть проблемы с представлением о том, что атомы находятся в постоянном движении. Принятие этих концепций необходимо студентам, чтобы понять атомную теорию и ее объяснительную силу. («Контрольные показатели научной грамотности», стр. 75.)

В курсе «Статическое электричество 1: знакомство с атомами» учащихся просят просмотреть веб-сайты, чтобы узнать об основной структуре атома, а также о положительных и отрицательных зарядах его субчастиц. Этот урок закладывает основу для дальнейшего изучения статического и текущего электричества, сосредоточив внимание на идее положительных и отрицательных зарядов на атомном уровне.Из-за количества и сложности информации, связанной с этой темой, учащиеся со временем получат понимание этих концепций. Важно, чтобы они исследовали эту тему в различных контекстах.

Статическое электричество 2: Знакомство со статическим электричеством помогает расширить представления учащихся об атомах и их отношении к статическому электричеству. На этом уроке учащиеся проводят несколько простых экспериментов, создавая статическое электричество, чтобы продемонстрировать, как противоположные заряды притягиваются друг к другу, а подобные заряды отталкиваются.Затем студенты изучают веб-сайт, который более подробно объясняет эти концепции.

Статическое электричество 3: Подробнее о статическом электричестве помогает расширить представления учащихся об атомах и их отношении к статическому электричеству. На этом уроке студенты изучают веб-сайт, чтобы изучить концепции, связанные со статическим электричеством. Затем ученики проводят эксперименты, в которых они создают статическое электричество и демонстрируют, как противоположные заряды притягиваются друг к другу, а подобные заряды отталкиваются.

Статическое электричество 4: Статическое электричество и молния знакомит учащихся с концепциями молнии и их отношением к статическому электричеству.На этом уроке учащиеся изучают различные веб-сайты, чтобы узнать о молнии, а затем объяснить своими словами, что вызывает молнию и как это связано со статическим электричеством.


Мотивация

Прежде чем попросить учащихся изучить веб-сайты, посвященные молниям и статическому электричеству, обсудите с ними их текущие знания по этой теме.

Раздайте пакет активности «Статическое электричество и молния». Студенты должны заполнить Часть 1 пакета в это время.Попросите учащихся записать свои ответы своими словами. Сообщите им, что они вернутся к этим ответам позже на уроке, после того, как завершат веб-квест. Обсудите со студентами, как они ответили на вопросы из Части 1 своего практического пакета.


Разработка

На этом уроке учащиеся будут использовать свою электронную таблицу «Статическое электричество и молния», чтобы пройти веб-квест, изучая следующие веб-сайты, чтобы больше узнать о молниях и статическом электричестве:

Предложите учащимся работать в парах или небольших группах, чтобы они могли помочь друг другу понять факты и концепции, используемые при исследовании Интернета.

После того, как учащиеся завершат часть 2 пакета заданий, проведите обсуждение, чтобы помочь им осмыслить идеи. Ниже приведены вопросы из пакета с предлагаемыми ответами.

Статическое электричество и молния

  • Объясните, что вызывает молнию. Как принцип притяжения противоположных зарядов способствует возникновению молнии? (Воздух, капли воды и даже кристаллы льда сильно трутся друг о друга внутри грозовой тучи, создавая два противоположных вида электрического заряда: отрицательный и положительный.Когда притяжение между зарядами настолько велико, что они толкают воздух навстречу друг другу, у вас есть молния.)
  • Нарисуйте схему, чтобы проиллюстрировать, что происходит с электронами в облаках и на земле во время грозы.
  • Как проще всего определить, как далеко от вас находится молния? (Свет распространяется быстрее звука. Если вы видите вспышку молнии, считайте секунды, пока не услышите гром. Разделите полученное число на пять, и это скажет вам, на сколько миль находится молния.)

Основы статического электричества

  • Опишите влияние статического электричества на материю. Используйте несколько примеров из своей повседневной жизни. (Статическое электричество может привести к слипанию или слипанию материалов. Например, вы можете наблюдать «статическое прилипание» к одежде, исходящей из сушилки. Это может привести к тому, что материалы отталкиваются или расходятся. Вы можете увидеть, как ваши волосы отталкиваются друг от друга после расчесывания. сухой день. Он может создавать искры, летящие от одного объекта к другому.Например, после того, как вы прошли по ковру, вы можете наблюдать искру от вашего пальца прямо перед тем, как коснуться дверной ручки. Вы также можете увидеть очень большие искры, когда увидите молнию во время грозы.)
  • Опишите, как работает электроскоп для обнаружения статического электричества. (При наличии статического электричества заряды спускаются вниз по стержню электроскопа и накапливаются на фольгах. Поскольку каждая фольга собирает одинаковый тип заряда, они разделяются или отталкиваются друг от друга.)
  • Почему лучше не использовать металлы для создания статического электричества? (Хотя трение о металлические предметы может вызвать некоторое статическое электричество, на самом деле это не работает.Это связано с тем, что электричество обычно проходит через металл, а не накапливается на поверхности, как это происходит с материалом, который не проводит электричество, например, пластиком.)
  • Опишите, как Бен Франклин доказал, что молния является статическим электричеством. (Бен Франклин доказал, что молния является статическим электричеством, запустив воздушного змея во время шторма и обнаружив статическое электричество, увидев, как волоски на веревке воздушного змея встают дыбом и создают искру на металлическом кайте, прикрепленном к воздушному змею.)
  • Как статическое электричество может повредить компьютер? (Если вы прикоснетесь к печатной плате компьютера, что вызовет искру статического электричества, это может серьезно повредить схему. Внезапный выброс электронов может легко разрушить микрочипы в компьютере.)

Искры статического электричества

  • Опишите причину искры. (Искра — это внезапный выброс электронов по воздуху от одного проводника к другому, нагревая воздух до тех пор, пока он не станет раскаленным добела.По мере того как количество электрических зарядов у поверхности материалов увеличивается, притяжение между положительными и отрицательными зарядами становится больше. Если притяжение достаточно велико, некоторые электроны покинут свой материал и полетят к другому объекту. Электроны, движущиеся в воздухе, вызывают его нагрев. По мере того, как воздух нагревается, все больше и больше электронов начинают прыгать на другую сторону, вызывая еще больше тепла, пока он не станет раскаленным добела. Это искра, которую вы видите и чувствуете.)
  • Чем молния отличается от искры? (Молния работает так же, как искра, за исключением того, что она случается в больших масштабах. Молния возникает, когда капли воды вращаются в грозовой туче. Они собирают положительные или отрицательные электрические заряды, так что вскоре одно облако может быть положительным и другое облако может быть отрицательным. Возникающее электрическое давление должно быть чрезвычайно высоким, чтобы молния могла начаться. Молния может переходить от облака к облаку или от земли к облаку.)
  • Что вызывает гром? (Гром возникает из-за того, что воздух очень быстро расширяется и сжимается.)

Использование статического электричества

  • Назовите несколько полезных способов использования статического электричества. (Использование статического электричества включает борьбу с загрязнением, копировальные аппараты и покраску.)
  • Опишите, как статическое электричество можно использовать для борьбы с загрязнением воздуха. (Заводы используют статическое электричество, чтобы уменьшить загрязнение, придавая дыму электрический заряд.Когда он проходит мимо электрода с противоположным зарядом, большая часть частиц дыма прилипает к электроду. Это предотвращает попадание загрязняющих веществ в атмосферу.)

Оценка

После того, как учащиеся завершили веб-квест и ответили на вопросы в Части 2 пакета упражнений, попросите их уточнить определение статического электричества и молнии, которое они разработали в разделе «Мотивация».

В Части 3 студенты должны объяснить, какие изменения они внесли и почему они внесли их.Попросите учащихся перечислить любые доказательства, которые они нашли в веб-квесте, которые побудили их изменить свое определение.

Кроме того, попросите учащихся объяснить, как статическое электричество, молния и искры являются взаимосвязанными явлениями. Затем нарисуйте диаграмму, показывающую отрицательные и положительные заряды, возникающие во время грозы.


Расширения

Следующие Интернет-ресурсы можно использовать для дальнейшего изучения тем, связанных с молнией и статическим электричеством:

  • Lightning На сайте NOVA Online есть мероприятие по освещению в помещении, в котором даются инструкции по проведению эксперимента с участием молний и искр.
  • Static Electricity рассматривает статическое электричество с точки зрения потенциальных эффектов электростатического разряда, включая предотвращение электростатического разряда в производстве электроники, материалы для электростатических растворов и уменьшение вредного воздействия электростатического разряда.
  • На веб-сайте «Театра электричества
  • » Бостонского музея науки есть множество тем, связанных с молниями, в том числе история, воздушный змей Франклина, викторина по безопасности и ресурсы для учителей с экспериментами.

Отправьте нам отзыв об этом уроке>

(PDF) Молния, электрическое явление в природе

Молния, электрическое явление в природе.

История

Исторически, изучение молний можно проследить со времен Бенджамина Франклина (1706 —

1790). Франклин пришел к выводу, что облака электрически заряжены. В эксперименте, где

он стоял на электрическом стенде, держа железный стержень, чтобы получить электрический разряд между

другой рукой и землей, пришел к выводу, что если бы облака были электрически заряжены, то между железом прыгало бы

искр. стержень и заземленный провод.Этому эксперименту способствовал

, проведенный Томасом Франсуа Далибаром (1709 — 1799) в мае 1752 года, в котором

искры выпрыгивали из железного стержня во время грозы. G.W. Рихманн (1711 — 1753)

погиб от удара молнии, когда доказал, что грозовые облака имеют электрический заряд.

По словам Лукаша Сташевского из Технологического университета, Польша, Бенджамин

Франклин попытался проверить теорию искр, имеющих некоторое сходство с молнией, используя

шпиль, который возводился в Филадельфии.В ожидании завершения строительства шпиля ему

пришла в голову идея использовать летающий объект, например, воздушный змей. В июне 1752 года сообщалось, что он поднял воздушного змея

. Ключ был прикреплен к его концу веревки, и он привязал его к столбу шелковой нитью. По прошествии времени

, свободные волокна на струне растягивались, затем он поднес руку к ключу

, и в промежутке проскочила искра. Дождь пропитал линию и сделал ее проводящей.

Хотя этот эксперимент показал, что молния была разрядом статического электричества,

мало улучшил теоретическое понимание за более чем 150 лет.

Определение

По определению, молния — это напряжение между облаками и Землей, которое становится настолько высоким, что паразитные электроны в воздухе ускоряются до кинетической энергии, достаточной для того, чтобы выбить

электронов из атомов воздуха ( Дуглас К. Джанколи, 2005). Согласно Мартину А. Уману

(1984), молнию можно определить как кратковременный сильноточный электрический разряд, длина пути которого

обычно измеряется в километрах.Это также может быть определено как электрический разряд в

форме искры в облаке заряженного.

Процесс формирования молнии

Молнию можно сформировать в четырех типах процессов: разделение заряда,

формирование лидера, разряд и повторный удар. Процесс разделения зарядов все еще является предметом

исследований с одной гипотезой, механизм поляризации, который состоит из двух компонентов.

Во-первых, падающие капли дождя становятся электрически поляризованными, когда они падают через естественное электрическое поле атмосферы

.Во-вторых, сталкивающиеся частицы льда заряжаются электростатической индукцией

. Кроме того, есть несколько других гипотез для этого процесса, например,

разделение зарядов запускается ионизацией молекулы воздуха входящим космическим лучом.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *