Как называется арифметическое действие?
Как называется арифметическое действие?
Нахождение по нескольким данным числам одного нового числа называется арифметическим действием. В арифметике рассматривается шесть действий: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня.
Какие бывают арифметические действия?
Основные арифметические действия
- Сложение Сложение – одна из основных операций, позволяющая объединить два слагаемых. …
- Вычитание Вычитание – действие, обратное сложению. …
- Умножение Умножение – арифметическое действие в виде краткой записи суммы одинаковых слагаемых. …
- Деление …
- Возведение в степень …
- Извлечение корня
Что такое знаки арифметических действий?
символические обозначения, при посредстве которых указываются арифметические действия над данными числами. Совокупность нескольких чисел, подлежащая в результате новому действию, заключается в «скобки», например (7—3+8), либо [7—3+8]. …
Какое арифметическое действие выполняется первым?
действия выполняются по порядку слева направо, причем сначала выполняется умножение и деление, а затем – сложение и вычитание.
Что первым идет деление или умножение?
Вывод: Если в выражениях только сложение и вычитание или умножение и деление, то действия выполняются по порядку слева направо. Выражения могут содержать сложение и вычитание, и умножение, и деление. В этом случае сначала выполняются деление и умножение по порядку. В математике эти действия считаются сильными.
Как умножать в столбик?
Умножение в столбик
- Запишем числа столбиком (одно под другим). В верхней строчке — большее число, в нижней — меньшее. …
- Сначала умножаем целиком верхнее число на последнюю цифру нижнего числа. Результат записывается под чертой под самой правой цифрой. …
- Умножаем «2» на «6». …
- Умножаем «4» на «6». …
- Переходим к умножению числа «427» на «3».
Как складывать и вычитать целые числа?
Итак, для сложения и вычитания целых чисел необходимо запомнить следующие правила: Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше.
Что такое сложить цифры?
Если кто-либо складывает цифры, то это означает, что этот человек прибавляет одно число к другому, производит операцию математического сложения. св. Сложить несколько трёхзначных чисел.
Как называется одно из чисел при сложении?
Слагаемые — это числа, единицы которых складываются. Например, в записи: 2 + 5, 2 — это первое слагаемое, 5 — второе слагаемое.
Как рассчитать разность?
Разность получается путем вычитания одного числа (вычитаемого) из другого (уменьшаемого). То есть, чтобы определить разность, нужно просто вычесть из большего числа меньшее. Например, числа 15 и 10.
Как связаны действия сложения и вычитания?
— Связаны ли между собой действия сложения и вычитания? Д. Да, связаны. — Арифметические действия сложения и вычитания дружат между собой, поэтому их называют взаимообратные.
Что такое сумма и разность чисел?
Вычитаемое – число, которое вычитают. Разность – результат вычитания. Слагаемое – число, которое складывают. Сумма – результат сложения.
Как найти сумму и разность?
Как обыкновенные числа. Чтобы найти сумму длин двух отрезков, нужно сложить длины этих отрезков. Чтобы найти разность длин двух отрезков, нужно из длины большего отрезка вычесть длину меньшего отрезка.
Выражения в 2 действия. Порядок выполнения действий, правила, примеры. Вставь пропущенное число — примеры со скобками. Тренажер
На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.
В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.
А в математике обязательно ли выполнять арифметические действия в определенном порядке?
Давайте проверим
Сравним выражения:
8-3+4 и 8-3+4
Видим, что оба выражения совершенно одинаковы.
Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).
Рис. 1. Порядок действий
В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.
Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.
Видим, что значения выражений получаются разные.
Сделаем вывод: порядок выполнения арифметических действий менять нельзя .
Узнаем правило выполнения арифметических действий в выражениях без скобок.
Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.
Потренируемся.
Рассмотрим выражение
В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .
Выполняем действия слева направо по порядку (рис. 2).
Рис. 2. Порядок действий
Рассмотрим второе выражение
В этом выражении имеются только действия умножения и деления — это действия второй ступени.
Выполняем действия слева направо по порядку (рис. 3).
Рис. 3. Порядок действий
В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?
Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.
Рассмотрим выражение.
Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.
Вычислим значение выражения.
18:2-2*3+12:3=9-6+4=3+4=7
В каком порядке выполняются арифметические действия, если в выражении имеются скобки?
Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.
Рассмотрим выражение.
30 + 6 * (13 — 9)
Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.
30 + 6 * (13 — 9)
Вычислим значение выражения.
30+6*(13-9)=30+6*4=30+24=54
Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?
Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:
1. действия, записанные в скобках;
2. умножение и деление;
3. сложение и вычитание.
Схема поможет запомнить это несложное правило (рис. 4).
Рис. 4. Порядок действий
Потренируемся.
Рассмотрим выражения, установим порядок действий и выполним вычисления.
43 — (20 — 7) +15
32 + 9 * (19 — 16)
Будем действовать по правилу. В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.
43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45
В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.
32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59
В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие — умножение, второе — деление, третье — вычитание.
2*9-18:3=18-6=12
Узнаем, правильно ли определен порядок действий в следующих выражениях.
37 + 9 — 6: 2 * 3 =
18: (11 — 5) + 47=
7 * 3 — (16 + 4)=
Рассуждаем так.
37 + 9 — 6: 2 * 3 =
В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие — деление, второе — умножение. Третье действие должно быть сложение, четвертое — вычитание. Вывод: порядок действий определен верно.
Найдем значение данного выражения.
37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37
Продолжаем рассуждать.
Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — деление, третье — сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.
18:(11-5)+47=18:6+47=3+47=50
В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — умножение, третье — вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.
7*3-(16+4)=7*3-20=21-20=1
Выполним задание.
Расставим порядок действий в выражении, используя изученное правило (рис. 5).
Рис. 5. Порядок действий
Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.
Действуем по алгоритму.
В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.
Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого — вычитание.
Проверим себя (рис. 6).
Рис. 6. Порядок действий
Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.
Список литературы
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
- М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
- М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
- Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
- «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
- С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
- В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
- Festival.1september.ru ().
- Sosnovoborsk-soobchestva.ru ().
- Openclass.ru ().
Домашнее задание
1. Определи порядок действий в данных выражениях. Найди значение выражений.
2. Определи, в каком выражении такой порядок выполнения действий:
1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.
3. Составь три выражения, в которых такой порядок выполнения действий:
1. умножение; 2. сложение; 3. вычитание
1. сложение; 2. вычитание; 3. сложение
1. умножение; 2. деление; 3. сложение
Найди значение этих выражений.
Сегодня мы поговорим о порядке выполнения математических действий . Какие действия выполнять первыми? Сложение и вычитание, или умножение и деление. Странно, но у наших детей возникают проблемы с решением, казалось бы, элементарных выражений.
Итак, вспомним о том, что сначала вычисляются выражения в скобках
38 – (10 + 6) = 22 ;
1) в скобках: 10 + 6 = 16 ;
2) вычитание: 38 – 16 = 22 .
Если в выражение без скобок входит только сложение и вычитание, или только умножение и деление, то действия выполняются по порядку слева направо.
10 ÷ 2 × 4 = 20 ;
Порядок выполнения действий :
1) слева направо, сначала деление: 10 ÷ 2 = 5 ;
2) умножение: 5 × 4 = 20 ;
10 + 4 – 3 = 11 , т. е.:
1) 10 + 4 = 14 ;
2) 14 – 3 = 11 .
Если в выражении без скобок есть не только сложение и вычитание, но и умножение или деление, то действия выполняются по порядку слева направо, но преимущество имеет умножение и деление, их выполняют в первую очередь, а за ними и сложение с вычитанием.
18 ÷ 2 – 2 × 3 + 12 ÷ 3 = 7
Порядок выполнения действий:
1) 18 ÷ 2 = 9 ;
2) 2 × 3 = 6 ;
3) 12 ÷ 3 = 4 ;
4) 9 – 6 = 3 ; т.е. слева направо – результат первого действия минус результат второго;
5) 3 + 4 = 7 ; т.е. результат четвертого действия плюс результат третьего;
Если в выражении есть скобки, то сначала выполняются выражения в скобках, затем умножение и деление, а уж потом сложение с вычитанием.
30 + 6 × (13 – 9) = 54 , т.е.:
1) выражение в скобках: 13 – 9 = 4 ;
2) умножение: 6 × 4 = 24 ;
3) сложение: 30 + 24 = 54 ;
Итак, подведем итоги. Прежде чем приступить к вычислению, надо проанализировать выражение: есть ли в нем скобки и какие действия в нем имеются.
1) действия, заключенные в скобках;
2) умножение и деление;
3) сложение и вычитание.
Если вы хотите получать анонсы наших статей подпишитесь на рассылку “ “.
Для правильного вычисления выражений, в которых нужно произвести более одного действия, нужно знать порядок выполнения арифметических действий. Арифметические действия в выражении без скобок условились выполнять в следующем порядке:
- Если в выражении присутствует возведение в степень, то сначала выполняется это действие в порядке следования, т. е. слева направо.
- Затем (при наличии в выражении) выполняются действия умножения и деления в порядке их следования.
- Последними (при наличии в выражении) выполняются действия сложения и вычитания в порядке их следования.
В качестве примера рассмотрим следующее выражение:
Сначала необходимо выполнить возведение в степень (число 4 возвести в квадрат и число 2 в куб):
3 · 16 — 8: 2 + 20
Затем выполняются умножение и деление (3 умножить на 16 и 8 разделить на 2):
И в самом конце, выполняются вычитание и сложение (из 48 вычесть 4 и к результату прибавить 20):
48 — 4 + 20 = 44 + 20 = 64
Действия первой и второй ступени
Арифметические действия делятся на действия первой и второй ступени. Сложение и вычитание называются действиями первой ступени , умножение и деление — действиями второй ступени .
Если выражение содержит действия только одной ступени и в нём нет скобок, то действия выполняются в порядке их следования слева направо.
Пример 1.
15 + 17 — 20 + 8 — 12
Решение. Данное выражение содержит действия только одной ступени — первой (сложение и вычитание). Надо определить порядок действий и выполнить их.
Ответ: 42.
Если выражение содержит действия обеих ступеней, то первыми выполняются действия второй ступени, в порядке их следования (слева направо), а затем действия первой ступени.
Пример. Вычислить значение выражения:
24: 3 + 5 · 2 — 17
Решение. Данное выражение содержит четыре действия: два первой ступени и два второй. Определим порядок их выполнения: согласно правилу первым действием будет деление, вторым — умножение, третьим — сложение, а четвёртым — вычитание.
Теперь приступим к вычислению.
И вычислении значений выражений действия выполняются в определенной очередности, иными словами, нужно соблюдать порядок выполнения действий .
В этой статье мы разберемся, какие действия следует выполнять сначала, а какие следом за ними. Начнем с самых простых случаев, когда выражение содержит лишь числа или переменные, соединенные знаками плюс, минус, умножить и разделить. Дальше разъясним, какого порядка выполнения действий следует придерживаться в выражениях со скобками. Наконец, рассмотрим, в какой последовательности выполняются действия в выражениях, содержащих степени, корни и другие функции.
Навигация по странице.
Сначала умножение и деление, затем сложение и вычитание
В школе дается следующее правило, определяющее порядок выполнения действий в выражениях без скобок :
- действия выполняются по порядку слева направо,
- причем сначала выполняется умножение и деление, а затем – сложение и вычитание.
Озвученное правило воспринимается достаточно естественно. Выполнение действий по порядку слева направо объясняется тем, что у нас принято вести записи слева направо. А то, что умножение и деление выполняется перед сложением и вычитанием объясняется смыслом, который в себе несут эти действия.
Рассмотрим несколько примеров применения этого правила. Для примеров будем брать простейшие числовые выражения, чтобы не отвлекаться на вычисления, а сосредоточиться именно на порядке выполнения действий.
Пример.
Выполните действия 7−3+6 .
Решение.
Исходное выражение не содержит скобок, а также оно не содержит умножения и деления. Поэтому нам следует выполнить все действия по порядку слева направо, то есть, сначала мы от 7 отнимаем 3 , получаем 4 , после чего к полученной разности 4 прибавляем 6 , получаем 10 .
Кратко решение можно записать так: 7−3+6=4+6=10 .
Ответ:
7−3+6=10 .
Пример.
Укажите порядок выполнения действий в выражении 6:2·8:3 .
Решение.
Чтобы ответить на вопрос задачи, обратимся к правилу, указывающему порядок выполнения действий в выражениях без скобок. В исходном выражении содержатся лишь действия умножения и деления, а согласно правилу, их нужно выполнять по порядку слева направо.
Ответ:
Сначала 6 делим на 2 , это частное умножаем на 8 , наконец, полученный результат делим на 3.
Пример.
Вычислите значение выражения 17−5·6:3−2+4:2 .
Решение.
Сначала определим, в каком порядке следует выполнять действия в исходном выражении. Оно содержит и умножение с делением, и сложение с вычитанием. Сначала слева направо нужно выполнить умножение и деление. Так 5 умножаем на 6 , получаем 30 , это число делим на 3 , получаем 10 . Теперь 4 делим на 2 , получаем 2 . Подставляем в исходное выражение вместо 5·6:3 найденное значение 10 , а вместо 4:2 — значение 2 , имеем 17−5·6:3−2+4:2=17−10−2+2 .
В полученном выражении уже нет умножения и деления, поэтому остается по порядку слева направо выполнить оставшиеся действия: 17−10−2+2=7−2+2=5+2=7 .
Ответ:
17−5·6:3−2+4:2=7 .
На первых порах, чтобы не перепутать порядок выполнения действий при вычислении значения выражения, удобно над знаками действий расставить цифры, соответствующие порядку их выполнения. Для предыдущего примера это выглядело бы так: .
Этого же порядка выполнения действий – сначала умножение и деление, затем сложение и вычитание — следует придерживаться и при работе с буквенными выражениями.
Действия первой и второй ступени
В некоторых учебниках по математике встречается разделение арифметических действий на действия первой и второй ступени. Разберемся с этим.
Определение.
Действиями первой ступени называют сложение и вычитание, а умножение и деление называют действиями второй ступени .
В этих терминах правило из предыдущего пункта, определяющее порядок выполнения действий, запишется так: если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем – действия первой ступени (сложение и вычитание).
Порядок выполнения арифметических действий в выражениях со скобками
Выражения часто содержат скобки, указывающие порядок выполнения действий . В этом случае правило, задающее порядок выполнения действий в выражениях со скобками , формулируется так: сначала выполняются действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем – сложение и вычитание.
Итак, выражения в скобках рассматриваются как составные части исходного выражения, и в них сохраняется уже известный нам порядок выполнения действий. Рассмотрим решения примеров для большей ясности.
Пример.
Выполните указанные действия 5+(7−2·3)·(6−4):2 .
Решение.
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, заключенных в эти скобки. Начнем с выражения 7−2·3 . В нем нужно сначала выполнить умножение, и только потом вычитание, имеем 7−2·3=7−6=1 . Переходим ко второму выражению в скобках 6−4 . Здесь лишь одно действие – вычитание, выполняем его 6−4=2 .
Подставляем полученные значения в исходное выражение: 5+(7−2·3)·(6−4):2=5+1·2:2 . В полученном выражении сначала выполняем слева направо умножение и деление, затем – вычитание, получаем 5+1·2:2=5+2:2=5+1=6 . На этом все действия выполнены, мы придерживались такого порядка их выполнения: 5+(7−2·3)·(6−4):2 .
Запишем краткое решение: 5+(7−2·3)·(6−4):2=5+1·2:2=5+1=6 .
Ответ:
5+(7−2·3)·(6−4):2=6 .
Бывает, что выражение содержит скобки в скобках. Этого бояться не стоит, нужно лишь последовательно применять озвученное правило выполнения действий в выражениях со скобками. Покажем решение примера.
Пример.
Выполните действия в выражении 4+(3+1+4·(2+3)) .
Решение.
Это выражение со скобками, это означает, что выполнение действий нужно начинать с выражения в скобках, то есть, с 3+1+4·(2+3) . Это выражение также содержит скобки, поэтому нужно сначала выполнить действия в них. Сделаем это: 2+3=5 . Подставив найденное значение, получаем 3+1+4·5 . В этом выражении сначала выполняем умножение, затем – сложение, имеем 3+1+4·5=3+1+20=24 . Исходное значение, после подстановки этого значения, принимает вид 4+24 , и остается лишь закончить выполнение действий: 4+24=28 .
Ответ:
4+(3+1+4·(2+3))=28 .
Вообще, когда в выражении присутствуют скобки в скобках, то часто бывает удобно выполнение действий начинать с внутренних скобок и продвигаться к внешним.
Например, пусть нам нужно выполнить действия в выражении (4+(4+(4−6:2))−1)−1 . Сначала выполняем действия во внутренних скобках, так как 4−6:2=4−3=1 , то после этого исходное выражение примет вид (4+(4+1)−1)−1 . Опять выполняем действие во внутренних скобках, так как 4+1=5 , то приходим к следующему выражению (4+5−1)−1 . Опять выполняем действия в скобках: 4+5−1=8 , при этом приходим к разности 8−1 , которая равна 7 .
Задание 192.
Выполни задания устно.
- 1) Найти сумму чисел 5 и 2. Вычесть эту сумму из числа 10.
- 2) К числу 8 прибавить разность чисел 9 и 3.
Решение:
- 1) 10 — (5 + 2) = 3
- 2) 8 + (9 — 3) = 14
Задание 193.
В рулоне было 15 м ткани. Первый покупатель приобрёл 5 м ткани, а второй 3 м. Сколько метров ткани осталось в рулоне?
Чтобы узнать, сколько метров ткани осталось в рулоне, продавец поступил так: вычислил, сколько всего метров ткани он продал, а потом полученное число вычел из 15.
15 — (5 + 3) = 7 (м)
Скобки обозначают, что сначала ну ясно найти сумму, а потом выполнить действие вычитания.
Задание 194.
Прочитай и вычисли.
От числа 12 отнять сумму чисел 7 и 2.
К числу 8 прибавить разность чисел 13 и 6.
Решение:
- 1) 12 — (7 + 2) = 3
- 2) 8 + (13 — 6) = 15
Задание 195.
На стоянке было 12 автомобилей. Сначала отъехало 4 автомобиля, а потом — ещё 3. Сколько автомобилей осталось на стоянке?
Решение:
- 1) 12 — (4 + 3) = 5
- Ответ: 5 автомобилей.
Задание 196.
У одной белки 9 орехов и столько же — у другой. Сколько всего орехов у белок?
Решение:
- 1) 9 + 9 = 18
- Ответ: 18 орехов.
Задание 197.
Прочитай и вычисли.
- 1) Из числа 14 вычесть разность чисел 7 и 2.
- 2) К числу 8 прибавить сумму чисел 3 и 6.
Решение:
- 1) 14 — (7 — 2) = 9
- 2) 8 + (3 + 6) = 17
Задание 198.
На стоянке было 13 грузовых автомобилей, а легковых на 8 меньше. Подъехало еще 6 легковых автомобилей. Сколько легковых автомобилей стало на стоянке?
Решение:
- 1) (13 — 8) + 6 = 11
- Ответ: 11 легковых автомобилей.
Задание 199.
Дополни и реши задачу.
В одном классе 7 компьютеров, а в другом на 2 компьютера… .
Решение:
В одном классе 7 компьютеров, а в другом на 2 компьютера меньше. Сколько компьютеров в 2 классах вместе.
- 1) 7 — 2 = 5
- 2) 7 + 5 = 12
- Выражение: (7 — 2) + 7 = 12
- Ответ: 12 компьютеров.
Задание 200.
Реши примеры.
Решение:
Решение:
Задание 202.
Из каждого примера на сложение составь два примера на вычитание.
9 + 7 = 16 | 14 — 6 = 8 |
Решение:
Задание 204.
Решение:
- 1) Сложить 9 и 7, равно 16. 9 плюс 7 равно 16. 9 увеличить на 7, равно 16. Сумма девяти и семи равна шестнадцати.
- 2) 14 вычесть 6 равно 8. 14 минус 6 равно 8. 14 уменьшить на 6 равно 8. Разность четырнадцати и шести равна восьми.
Задание 205.
Утром от коровы надоили 9 л молока, | а вечером — на 1 л меньше. | 3 л молока от вечернего удоя оставили, | а остальное продали. Сколько литров молока от вечернего удоя продали?
Прочитай всю задачу. Подумай, о чём в ней рассказывается.
Прочитай задачу по частям, на которые она разделена линиями.
Реши задачу.
План решения
- 1) Сколько литров молока надоили вечером?
- 2) Сколько литров молока от вечернего удоя продали?
Решение:
- 1) 9 — 1 = 8
- 2) 8 — 3 = 5
- Выражение: (9 — 1) — 3 = 5
- Ответ: 5 литров.
Задание 206.
В субботу отец и сын вместе обрезали 4 дерева. В воскресенье отец обрезал 3 дерева и столько же деревьев обрезал сын. Сколько всего деревьев они обрезали за 2 дня?
Решение:
- 1) 3 + 3 = 6
- 2) 4 + 6 = 10
- Выражение: 4 + 3 + 3 = 10
- Ответ: 10 деревьев.
Задание 207.
Реши примеры.
Решение:
14 — 6 — 6 = 2 | 7 + 5 + 1 = 13 | 16 — 8 + 1 = 9 |
14 — (6 — 6) = 14 | 7 + (5 + 1) = 13 | 16 — (8 + 1) = 7 |
Задание 208.
Составь задачу по рисунку и реши её.
Решение:
Под деревом лежало 12 яблок. Один ежик забрал 4 яблока, а другой еще 3. Сколько яблок осталось под деревом?
- 1) 4 + 3 = 7
- 2) 12 — 7 = 5
- Выражение: 12 — (4 + 3) = 5
- Ответ: 5 яблок.
Вы сначала делите или умножаете?
Порядок операций говорит вам сначала выполнить умножение и деление, работая слева направо, прежде чем выполнять сложение и вычитание. Продолжайте выполнять умножение и деление слева направо. Далее складываем и вычитаем слева направо.
Какие 3 правила алгебры?
Существует множество законов, определяющих порядок выполнения операций в арифметике и алгебре. Три наиболее широко обсуждаемых закона — это коммутативный, ассоциативный и распределительный законы. С годами люди обнаружили, что когда мы складываем или умножаем, порядок чисел не влияет на результат.
Каков порядок операций в математике?
Порядок операций — это правило, указывающее правильную последовательность шагов для вычисления математического выражения. Мы можем запомнить порядок, используя PEMDAS: скобки, экспоненты, умножение и деление (слева направо), сложение и вычитание (слева направо).
Каков правильный порядок операций?
Что это означает в Порядке операций \
Как узнать, когда умножать и когда делить, чтобы преобразовать единицы измерения написать три-четыре предложения?
Основное правило: если вам нужно преобразовать большую единицу в меньшую, умножьте . Если вам нужно преобразовать меньшую единицу в большую, разделите . Вы уменьшите число, а, как вы уже знаете, деление — это уменьшение числа.
Когда у вас есть выбор умножения или деления, что вы должны сделать в первую очередь?
При упрощении выражения, такого как 12 ÷ 4 + 5 x 3 — 6, вы должны сначала вычислить 12 ÷ 4, поскольку порядок операций требует, чтобы вы начинали с левой стороны выражения и выполняли умножение или деление (в зависимости от того, что наступит раньше) перед сложением или вычитанием.
Всегда ли сначала идет умножение?
Порядок операций говорит вам сначала выполнить умножение и деление, работая слева направо, прежде чем выполнять сложение и вычитание. Продолжайте выполнять умножение и деление слева направо. Далее складываем и вычитаем слева направо. … Сначала умножьте .
Каковы правила умножения и деления научных обозначений?
Поскольку все числа в экспоненциальном представлении имеют основание 10, мы всегда можем их умножать и делить. Чтобы умножить два числа в экспоненциальном представлении, умножьте их коэффициенты и сложите их степени. Чтобы разделить два числа в экспоненциальном представлении, разделите их коэффициенты и вычтите их степени.
Вы умножаете перед сложением?
Порядок операций говорит вам сначала выполнить умножение и деление слева направо, прежде чем выполнять сложение и вычитание. Продолжайте выполнять умножение и деление слева направо. Далее складываем и вычитаем слева направо.
Что такое математическое правило?
Четыре основных математических правила: сложение, вычитание, умножение и деление.
Какое правило умножения и деления?
Поскольку деление является обратным умножению, правила деления такие же, как и правила умножения. Поэтому при умножении и делении положительных и отрицательных чисел помните следующее: если знаки одинаковые, ответ положительный, если знаки разные, ответ отрицательный.
GEMDAS Порядок операций
GEMDAS — это правило, которое можно использовать для упрощения или вычисления сложных числовых выражений с помощью более чем одной двоичной операции.