Урок 3. Сочетательное и распределительное свойства умножения – конспект урока – Корпорация Российский учебник (издательство Дрофа – Вентана)
Разработки уроков (конспекты уроков)
Основное общее образование
Линия УМК А. Г. Мерзляка. Математика (5-6)
Математика
Данный план урока является частью сервиса «Классная работа»*
Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.
Цель урока
Обобщить и систематизировать знания учащихся о сочетательном и распределительном свойствах умножения.
Задачи урока
- Развивать готовность к самообразованию и решению творческих задач.
Виды деятельности
-
Фронтальная, индивидуальная, парная.
Ключевые понятия
-
Сочетательное свойство умножения, распределительное свойство умножения относительно сложения, распределительное свойство умножения относительно вычитания.
№ | Название этапа | Методический комментарий |
---|---|---|
1 | Актуализация знаний | |
2 | Обобщение и систематизация знаний | Для фронтальной работы на уроке рекомендуем задания из учебника: № 434 (3, 4), 436, 438, 440, 442. № 442. 4) Каждый множитель, кратный 5, но не кратный 25, добавляет в запись числа 100! один нуль. Легко увидеть, что таких множителей ровно 16. Каждый множитель, кратный 25, добавляет в запись числа 100! два нуля. Таких множителей ровно 4. Таким образом, число 100! оканчивается 16 + 4 · 2 = 24 нулями. Для парной работы на уроке рекомендуем задания: № 1, 2. Для индивидуальной работы на уроке рекомендуем задания: № 3, 4, 5. |
3 | Контроль и коррекция знаний | Задания контрольной работы можно вывести на интерактивную доску или распечатать. |
4 | Повторение | Для повторения можно использовать задание из учебника. |
5 | Рефлексия учебной деятельности | Для подведения итогов урока можно предложить учащимся ответить на вопросы. |
6 | Информация о домашнем задании | Для индивидуальной работы дома рекомендуем: § 17, № 437, 439, 441. |
Данный план урока является частью сервиса «Классная работа»*
Используйте презентациюВнесите нужные вам правки: в технологическую карту урока или в презентацию, если требуется.
Хотите сохранить материал на будущее? Отправьте себе на почту
в избранноеТолько зарегистрированные пользователи могут добавлять в избранное.
Войдите, пожалуйста.
Назад к методической помощи по линии Линия УМК А. Г. Мерзляка. Математика (5-6)
Оценка разработки
Для оценки работы вам необходимо авторизоваться на сайте
Войти или зарегистрироваться
Ограничение доступа
Для доступа к материалу требуется регистрация на сайте
Войти или зарегистрироваться
Нужна помощь?
Конспект урока «сочетательное и распределительное свойства умножения». Свойства умножения натуральных чисел
Начертим на листке в клетку прямоугольник со сторонами 5 см и 3 см. Разобьем его на квадраты со стороной 1 см (рис. 143 ). Подсчитаем количество клеток, расположенных в прямоугольнике. Это можно сделать, например, так.
Количество квадратов со стороной 1 см равно 5 * 3 . Каждый такой квадрат состоит из четырех клеток. Поэтому общее число клеток равно (5 * 3 ) * 4 .
Эту же задачу можно решить иначе. Каждый из пять столбцов прямоугольника состоит из трех квадратов со стороной 1 см. Поэтому в одном столбце содержится 3 * 4 клеток. Следовательно, всего клеток будет 5 * (3 * 4 ).
Подсчет клеток на рисунке 143 двумя способами иллюстрирует сочетательное свойство умножения для чисел 5, 3 и 4 . Имеем: (5 * 3 ) * 4 = 5 * (3 * 4 ).
Чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего чисел.
(ab)c = a(bc)
Из переместительного и сочетательно свойств умножения следует, что при умножении нескольких чисел множители можно менять местами и заключать в скобки, тем самым определяя порядок вычислений .
Например, верны равенства:
abc = cba,
17 * 2 * 3 * 5 = (17 * 3 ) * (2 * 5 ).
На рисунке 144 отрезок AB делит рассмотренный выше прямоугольник на прямоугольник и квадрат.
Подсчитаем количество квадратов со стороной 1 см двумя способами.
С одной стороны, в образовавшемся квадрате их содержится 3 * 3, а в прямоугольнике − 3 * 2 . Всего получим 3 * 3 + 3 * 2 квадратов. С другой стороны, в каждой из трех строчек данного прямоугольника находится 3 + 2 квадрата. Тогда их общее количество равно 3 * (3 + 2 ).
Равенсто 3 * (3 + 2 ) = 3 * 3 + 3 * 2 иллюстрирует распределительное свойство умножения относительно сложения .
Чтобы число умножить на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные произведения сложить.
В буквенном виде это свойство записывают так:
a(b + c) = ab + ac
Из распределительного свойства умножения относительно сложения следует, что
ab + ac = a(b + c).
Это равенство позволяет формулу P = 2 a + 2 b для нахождения периметра прямоугольника записать в таком виде:
P = 2 (a + b).
Заметим, что распределительное свойство справедливо для трех и более слагаемых. Например:
a(m + n + p + q) = am + an + ap + aq.
Также справедливо распределительное свойство умножения относительно вычитания: если b > c или b = c, то
a(b − c) = ab − ac
Пример 1 . Вычислите удобным способом:
1 ) 25 * 867 * 4 ;
2 ) 329 * 75 + 329 * 246 .
1 ) Используем переместительное, а затме сочетательное свойства умножения:
25 * 867 * 4 = 867 * (25 * 4 ) = 867 * 100 = 86 700 .
2 ) Имеем:
329 * 754 + 329 * 246 = 329 * (754 + 246 ) = 329 * 1 000 = 329 000 .
Пример 2 . Упростите выражение:
1 ) 4 a * 3 b;
2 ) 18 m − 13 m.
1 ) Используя переместительное и сочетательное свойства умножения, получаем:
4 a * 3 b = (4 * 3 ) * ab = 12 ab.
2 ) Используя распределительное свойство умножения относительно вычитания, получаем:
18 m − 13 m = m(18 − 13 ) = m * 5 = 5 m.
Пример 3 . Запишите выражение 5 (2 m + 7 ) так, чтобы оно не содержало скобок.
Согласно распределительному свойству умножения относительно сложения имеем:
5 (2 m + 7 ) = 5 * 2 m + 5 * 7 = 10 m + 35 .
Такое преобразование называют раскрытием скобок .
Пример 4 . Вычислите удобным способом значение выражения 125 * 24 * 283 .
Решение. Имеем:
125 * 24 * 283 = 125 * 8 * 3 * 283 = (125 * 8 ) * (3 * 283 ) = 1 000 * 849 = 849 000 .
Пример 5 . Выполните умножение: 3 сут 18 ч * 6 .
Решение. Имеем:
3 сут 18 ч * 6 = 18 сут 108 ч = 22 сут 12 ч.
При решении примера было использовано распределительное свойство умножения относительно сложения:
3 сут 18 ч * 6 = (3 сут + 18 ч) * 6 = 3 сут * 6 + 18 ч * 6 = 18 сут + 108 ч = 18 сут + 96 ч + 12 ч = 18 сут + 4 сут + 12 ч = 22 сут 12 ч.
Назад Вперёд
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.
Цель: учить упрощать выражение, содержащее только действия умножения.
Задачи (Слайд 2):
- Познакомить с сочетательным свойством умножения.
- Формировать представление о возможности использования изученного свойства для рационализации вычислений.
- Развивать представления в возможности решения «жизненных» задач средствами предмета «математика».
- Развивать интеллектуальные и коммуникативные общеучебные умения.
- Развивать организационные общеучебные умения, в том числе умения самостоятельно оценивать результат своих действий, контролировать самого себя, находить и исправлять собственные ошибки.
Тип урока: изучение нового материала.
План урока:
1. Организационный момент.
2. Устный счёт. Математическая разминка.
Строка чистописания.
3. Сообщение темы и задач урока.
4. Подготовка к изучению нового маериала.
5. Изучение нового материала.
6. Физкультминутка
7. Работа по закреплению н. м. Решение задачи.
8. Повторение пройденного материала.
9. Итог урока.
10. Рефлексия
11. Домашнее задание.
Оборудование: карточки с заданием, наглядный материал (таблицы), презентация.
ХОД УРОКА
I. Организационный момент
Прозвенел и смолк звонок.
Начинается урок.
Вы зa парты тихо сели
На меня все посмотрели.
II. Устный счёт
– Посчитаем устно:
1) «Весёлые ромашки» (Слайды 3-7 таблица умножения)
2) Математическая разминка. Игра «Найди лишнее» (Слайд 8)
- 485 45 864 947 670 134 (классификация на группы ЛИШНЕЕ 45 – двузначное, 670 – в записи числа нет цифры 4).
- 9 45 72 90 54 81 27 22 18 (9 – однозначное, 22 не делится на 9)
Строка чистописания. Прописать в тетради
числа, чередуя: 45 22
670 9
– Подчеркнуть самую аккуратную запись числа
III. Сообщение темы и задач урока. (Слайд 9)
– Запишите число, тему урока.
– Прочитайте задачи нашего урока
IV. Подготовка к изучению нового материала
а) Верно ли выражение
На доске запись:
(23 + 490 + 17) + (13 + 44 + 7) = 23 + 490 + 17 + 13 + 44 + 7
– Назовите используемое свойство сложения. (Сочетательное)
– Какую возможность даёт сочетательное
свойство?
Сочетательное свойство даёт возможность записывать выражения, содержащие только сложение, без скобок.
43 + 17 + (45 + 65 + 91) = 91 + 65 + 45 + 43 + 17
– Какие свойства сложения мы применяются в данном случае?
Сочетательное свойство даёт возможность записывать выражения, содержащие только сложение, без скобок. При этом вычисления можно выполнять в любом порядке.
– В таком случае как называется ещё одно свойство сложения? (Переместительное)
– Вызывает ли это выражение затруднение? Почему?(Мы не умеем умножать двузначное число на однозначное)
V. Изучениенового материала
1) Если мы будем выполнять умножение в том порядке, в каком записаны выражения, то возникнут трудности. Что же поможет нам снять эти трудности?
(2 * 6) * 3 = 2 * 3 * 6
2) Работа по учебнику с. 70, № 305 (Выскажи своё предположение о результатах, которые получат Волк и Заяц. Проверь себя, выполнив вычисления).
3) № 305. Проверь, равны ли значения выражений. Устно.
Запись на доске:
(5 2) 3 и 5 (2 3)
(4 7) 5 и 4 (7 5)
4) Сделай вывод. Правило.
Чтобы произведение двух чисел умножить на
третье число, можно первое число умножить на
произведение второго и третьего.
– Расскажите сочетательное свойство умножения.
– Объясните сочетательное свойство умножения на
примерах
5) Коллективная работа
На доске: (8 3) 2, (6 3) 3, 2 (4 7)
VI. Физминутка
1) Игра «Зеркало». (Слайд 10)
Свет мой зеркальце, скажи,
Да всю правду доложи.
Мы ль на свете всех умнее,
Всех забавней и смешнее?
Повторяйте все за мной
Веселые движения физминутки озорной.
2) Физминутка для глаз «Зоркие глазки».
– Закройте глаза на 7 секунд, посмотрите направо, затем налево, вверх, вниз, затем сделайте глазами 6 кругов по часовой стрелке, 6 кругов против часовой стрелки.
VII. Закрепление изученного
1)Работа по учебнику. решение задачи. (Слайд 11)
(с. 71, № 308) Прочитайте текст. Докажите, что это
задача. (Есть условие, вопрос)
– Выделите условие, вопрос.
– Назовите числовые данные. (Три, 6,
трёхлитровые)
– Что они обозначают? (Три ящика. 6 банок, в
каждой банке по 3 литра сока)
– Какая это задача по структуре? (Составная
задача, т. к. нельзя сразу ответить на вопрос
задачи или для решения требуется составление
выражения)
– Тип задачи? (Составная задача на
последовательные действия))
– Решите задачу без краткой записи составлением
выражения. Для этого используйте следующую
карточку:
Карточка-помощница
– В тетради решение задачи можно оформить следующим образом: (3 6) 3
– Можем ли мы решить задачу в таком порядке?
(3 6) 3 = (3 3) 6 = 9 6 = 54 (л).
3 (3 6) = (3 3) 6 = 9 6 = 54 (л)
Ответ: 54 литра сока во всех ящиках.
2) Работа в парах (по карточкам): (Слайд 12)
– Поставь знаки, не вычисляя:
(15 * 2) *4 15 * (2 * 4) (–Какое свойство?)
(8 * 9) * 6 7 * (9 * 6)
(428 * 2) * 0 1 * (2 * 3)
(3 * 4) * 2 3 + 4 + 2
(2 * 3) * 4 (4 * 2) * 3
Проверка: (Слайд 13)
(15 * 2) * 4 = 15 * (2 * 4)
(8 * 9) * 6 > 7 * (9 * 6)
(428 * 2) * 0 (3 * 4) * 2 > 3 + 4 + 2
(2 * 3) * 4 = (4 * 2) * 3
3) Самостоятельная работа (по учебнику)
(с. 71, № 307 – по вариантам)
1 в. (8 2) 2 = (6 2) 3 = (19 1) 0 =
2 в. (7 3) 3 = (9 2) 4 = (12 9) 0 =
Проверка:
1 в. (8 2) 2 = 32 (6 2) 3 = 36 (19 1) 0 = 0.
2 в. (7 3) 3 = 63 (9 2) 4 = 72 (12 9) 0 = 0
Свойства умножения: (Слайд 14).
- Переместительное свойство
- Сочетательное свойство
– Зачем нужно знать свойства умножения? (Слайд 15).
- Чтобы быстро считать
- Выбирать рациональный способ счета
- Решать задачи
VIII. Повторение пройденного материала. «Ветряные мельницы». (Слайд 16, 17)
- Числа 485, 583 и 681 увеличить на 38 и записать три числовых выражения (1 вариант)
- Числа 583, 545 и 507 уменьшить на 38 и записать три числовых выражения (2 вариант)
485
+ 38
523583
+ 38
621681
+ 38
719583
– 38
545545
– 38
507507
– 38
469
Учащиеся выполняют задания по вариантам (двое учащихся решают задания на дополнительных досках).
Взаимопроверка.
IХ. Итог урока
– Чему учились сегодня на уроке?
– В чём же заключается смысл сочетательного
свойства умножения?
Х. Рефлексия
– Кто считает, что понял смысл сочетательного
свойства умножения? Кто доволен своей работой на
уроке? Почему?
– Кто знает, над чем ему еще надо поработать?
– Ребята, если вам урок понравился, если вы
довольны своей работой, то поставьте руки на
локти и покажите мне ладошки. А если вы были
чем-то расстроены, то покажите мне обратную
сторону ладошки.
XI. Информация о домашнем задании
– Какое домашнее задание вы бы хотели получить?
По выбору:
1. Выучить правило с. 70
2. Придумать и записать выражение на новую тему с
решением
Рассмотрим пример, подтверждающий справедливость переместительного свойства умножения двух натуральных чисел. Отталкиваясь от смысла умножения двух натуральных чисел , вычислим произведение чисел 2 и 6 , а также произведение чисел 6 и 2 , и проверим равенство результатов умножения. Произведение чисел 6 и 2 равно сумме 6+6 , из таблицы сложения находим 6+6=12 . А произведение чисел 2 и 6 равно сумме 2+2+2+2+2+2 , которая равна 12 (при необходимости смотрите материал статьи сложение трех и большего количества чисел). Следовательно, 6·2=2·6 .
Приведем рисунок, иллюстрирующий переместительное свойство умножения двух натуральных чисел.
Сочетательное свойство умножения натуральных чисел.
Озвучим сочетательное свойство умножения натуральных чисел: умножить данное число на данное произведение двух чисел – это то же самое, что умножить данное число на первый множитель, и полученный результат умножить на второй множитель . То есть, a·(b·c)=(a·b)·c , где a , b и c могут быть любыми натуральными числами (в круглые скобки заключены выражения, значения которых вычисляются в первую очередь).
Приведем пример для подтверждения сочетательного свойства умножения натуральных чисел. Вычислим произведение 4·(3·2) . По смыслу умножения имеем 3·2=3+3=6 , тогда 4·(3·2)=4·6=4+4+4+4+4+4=24 . А теперь выполним умножение (4·3)·2 . Так как 4·3=4+4+4=12 , то (4·3)·2=12·2=12+12=24 . Таким образом, справедливо равенство 4·(3·2)=(4·3)·2 , подтверждающее справедливость рассматриваемого свойства.
Покажем рисунок, иллюстрирующий сочетательное свойство умножения натуральных чисел.
В заключении этого пункта отметим, что сочетательное свойство умножения позволяет однозначно определить умножение трех и большего количества натуральных чисел .
Распределительное свойство умножения относительно сложения.
Следующее свойство связывает сложение и умножение. Оно формулируется так: умножить данную сумму двух чисел на данное число – это то же самое, что сложить произведение первого слагаемого и данного числа с произведением второго слагаемого и данного числа . Это так называемое распределительное свойство умножения относительно сложения.
С помощью букв распределительное свойство умножения относительно сложения записывается как (a+b)·c=a·c+b·c (в выражении a·c+b·c сначала выполняется умножение, после чего – сложение, подробнее об этом написано в статье ), где a , b и c – произвольные натуральные числа. Отметим, что силу переместительного свойства умножения, распределительное свойство умножения можно записать в следующем виде: a·(b+c)=a·b+a·c .
Приведем пример, подтверждающий распределительное свойство умножения натуральных чисел. Проверим справедливость равенства (3+4)·2=3·2+4·2 . Имеем (3+4)·2=7·2=7+7=14 , а 3·2+4·2=(3+3)+(4+4)=6+8=14 , следовательно, равенство (3+4)·2=3·2+4·2 верно.
Покажем рисунок, соответствующий распределительному свойству умножения относительно сложения.
Распределительное свойство умножения относительно вычитания.
Если придерживаться смысла умножения, то произведение 0·n , где n – произвольное натуральное число, большее единицы, представляет собой сумму n слагаемых, каждое из которых равно нулю. Таким образом, . Свойства сложения позволяют нам утверждать, что последняя сумма равна нулю.
Таким образом, для любого натурального числа n выполняется равенство 0·n=0 .
Чтобы оставалось справедливым переместительное свойство умножения примем также справедливость равенства n·0=0 для любого натурального числа n .
Итак, произведение нуля и натурального числа равно нулю , то есть 0·n=0 и n·0=0 , где n – произвольное натуральное число. Последнее утверждение представляет собой формулировку свойства умножения натурального числа и нуля.
В заключении приведем пару примеров, связанных с разобранным в этом пункте свойством умножения. Произведение чисел 45 и 0 равно нулю. Если умножить 0 на 45 970 , то тоже получим нуль.
Теперь можно смело начинать изучение правил, по которым проводится умножение натуральных чисел .
Список литературы.
- Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
- Математика. Любые учебники для 5 классов общеобразовательных учреждений.
Арифметические свойства — Коммутативные, ассоциативные, дистрибутивные
Умножение и сложение обладают специфическими арифметическими свойствами , которые характеризуют эти операции. В произвольном порядке это коммутативные, ассоциативные, дистрибутивные, тождественные и обратные свойства.
Свойство коммутативности
Операция является коммутативной, если изменение порядка операндов не меняет результат.
Коммутативное свойство сложения означает, что порядок добавления чисел не имеет значения. Это означает, что если вы сложите 2 + 1, чтобы получить 3, вы также можете сложить 1 + 2, чтобы получить 3.
Другими словами, размещение дополнений может быть изменено, и результаты будут одинаковыми. Точно так же коммутативное свойство умножения означает, что места множителей можно менять, не влияя на результат.
Ассоциативное свойство
В выражении, содержащем два или более вхождений только сложения или только умножения, порядок выполнения операций не имеет значения, пока последовательность операндов не изменяется. Это называется ассоциативное свойство .
То есть перестановка скобок в таком выражении не изменит его значения.
Например, сгруппируйте и добавьте:
$\ 1 + 5 + 9 + 5 = ?$
Чтобы упростить это, используйте коммутативное свойство, чтобы изменить порядок, а затем используйте ассоциативное свойство, чтобы сгруппировать $1$ и $9$, $5$ и $5$, поскольку обе эти пары дают в сумме $10$, поэтому окончательный результат равен $20$.
Распределительное имущество
Распределительное имущество сочетает в себе сложение и умножение. Если число умножает сумму в скобках, скобки можно убрать, если мы умножим каждый член в скобках на одно и то же число.
Количество членов в скобках не имеет значения, оно всегда будет действительным.
Это свойство обычно применяется, когда неизвестные входят в состав сложения, и позволяет выделить неизвестные.
Элемент идентификации
Элемент идентификации или нейтральный элемент — это элемент, который оставляет другие элементы неизменными при объединении с ними. Элемент идентичности для сложения равен 0, а для умножения равен 1.
Обратный элемент
Мультипликативное обратное или обратное число $x$, обозначаемое $\frac{1}{x}$, представляет собой число, которое при умножении на $x$ получается мультипликативное тождество 1. Мультипликативная обратная дробь $\frac{x}{y}$ равна $\frac{y}{x}$
Аддитивная обратная числа $x$ — это число, которое при добавлении к $x$ дает ноль. Это число также известно как , противоположное (число), изменение знака и отрицание. Для действительного числа оно меняет знак: противоположное положительному числу отрицательное, а противоположное отрицательному числу положительное. Ноль является аддитивной инверсией самого себя.
Например, обратное число 5 равно $\frac{1}{5}$, а число, противоположное числу 5, равно -5.
В чем разница между коммутативным и ассоциативным свойством?
Когда вы думаете о сложении или умножении, важно знать некоторые свойства или законы. В математике это вещи, которые остаются неизменными.
Переместительное свойство против ассоциативного свойстваПереместительное свойство или переместительный закон означает, что вы можете изменить порядок сложения или умножения чисел и получить тот же результат.
Например, в переместительном свойстве сложения, если у вас есть 2 + 4, вы можете изменить его на 4 + 2, и вы получите тот же ответ (6).
То же самое с коммутативным свойством умножения. Если у вас есть 2 х 4, вы можете изменить его на 4 х 2 и получить тот же результат (8).
Отличие от ассоциативного свойства или ассоциативного закона состоит в том, что в нем задействовано более двух чисел. Неважно, как вы группируете числа или что вы складываете или умножаете в первую очередь. Важно то, что это только сложение или только умножение.
Вы можете изменить порядок сложения или умножения чисел и получить тот же результат.
Ассоциативность сложения означает, что вы можете складывать числа в любом порядке. Пример: 2 + 3 + 1 + 5 + 6 = 17. Это верно, если вы прибавляете 2 к 3 к 1 к 5 к 6 или если вы складываете 2 и 3 вместе, чтобы получить 5, а затем складываете 1, 5 и 6 вместе. чтобы получить 12, и 5 и 12 вместе, чтобы получить 17.
Ассоциативное свойство для умножения то же самое. Если у вас есть три или более чисел, вы можете умножать их в любом порядке, чтобы получить тот же результат.
Например, в задаче: 2 х 3 х 5 х 6 вы можете умножить 2 х 3, чтобы получить 6, а затем 5 х 6, чтобы получить 30, а затем умножить 6 х 30, чтобы получить 180. Вы можете умножать числа в любом порядке и получится 180.
Арифметические рабочие листы
Арифметические свойства — Целые числа (127,4 киб, 3 215 хитов)
Арифметические свойства — десятичные дни (159,3 киб, 1 212 герт)
9000 2 (159,3 киб, 1 212 Гит) 9000. 4.Распространяемое свойство (311,9 КиБ, 1419 обращений)
AAAKnow
- AAAKnow имеет полный набор из тысяч интерактивные уроки арифметики .
- Существует бесплатно или требуется регистрация для практики вашего математике на веб-сайте AAAKnow.com.
- Неограниченная практика доступна по каждой теме, что позволяет доскональный мастер понятий.
- широкий выбор уроков (от детского сада до восьмого класса) уровень) позволяет изучать или анализировать информацию на текущем уровне каждого человека.
- Немедленная обратная связь предотвращает отработку и обучение неправильному методов, что является обычным результатом традиционных домашних заданий и рабочих листов. Практика может продолжаться сколь угодно долго в не угрожающем формате, который помогает повысить самооценку и уверенность в себе.
- Пожалуйста, не стесняйтесь попробовать уроки , нажав на один из оценки вверху или область темы в левой части страницы.
- Не забудьте добавить сайт в избранное и расскажите о нем другим. сайт. Это отличный способ выучить или повторить математику .
Примечание: из-за интенсивного трафика страница может загружаться некорректно. Один и тот же контент доступно на AAAKnow.com, AAAStudy.com, AAAMath.com.
Что нового в AAA Know?
Веб-сайт AAAMath.com начал свою работу в 2000 году, чтобы предоставлять бесплатные интерактивные математические уроки по основам арифметики и связанным с ними математическим темам K-8. Мы считаем, что этот подход лучше, чем традиционные рабочие листы, потому что он обеспечивает немедленную обратную связь, в то время как рабочие листы позволяют учащимся неоднократно практиковать неправильные методы до того, как им будет выставлена оценка.
AAAKnow.com был зеркалом AAAMath.com, которое использовалось для обработки больших объемов трафика. Они были по сути одинаковыми. Когда переписывание AAAMath. com в современный формат было завершено, мы решили разместить его на сайте AAAKnow.com. Таким образом, люди могли по-прежнему использовать формат AAAMath.com, если они предпочитали его, и могли попробовать и использовать новый формат, если они предпочитали его.
AAAMath.com
- Использует старый веб-формат.
- Оригинальные уроки
- Не работает с мобильными устройствами
- В основном для настольных компьютеров
- Новые уроки будут со ссылками на AAAKnow.com
- Все уроки старого формата будут по-прежнему доступны
- Интерактивные уроки математики
- Бесплатно и без регистрации
- Неограниченная практика
- Немедленная обратная связь предотвращает использование неправильных методов.
- Отличный способ выучить математику
- Может измениться на новый формат в будущем