Разбор слова получается по составу: Получается разбор слова по составу

Производство водорода: риформинг природного газа

Отдел технологий водорода и топливных элементов

Конверсия природного газа — это передовой и зрелый производственный процесс, основанный на существующей инфраструктуре трубопроводов для доставки природного газа. Сегодня 95% водорода, производимого в США, производится путем риформинга природного газа на крупных центральных заводах. Это важный технологический путь для производства водорода в ближайшей перспективе.

Как это работает?

Природный газ содержит метан (CH 4 ), который можно использовать для производства водорода с помощью термических процессов, таких как конверсия метана с паром и парциальное окисление.

Хотя сегодня большая часть водорода производится из природного газа, Управление технологий водорода и топливных элементов изучает различные способы производства водорода из возобновляемых ресурсов.

Паро-метановый риформинг

Большая часть водорода, производимого в настоящее время в Соединенных Штатах, производится путем конверсии метана с водяным паром, зрелого производственного процесса, в котором высокотемпературный пар (700°C–1000°C) используется для производства водорода из источника метана, такого как натуральный газ. При паровой конверсии метана метан реагирует с паром под давлением 3–25 бар (1 бар = 14,5 фунта на кв. дюйм) в присутствии катализатора с образованием водорода, монооксида углерода и относительно небольшого количества диоксида углерода. Паровой риформинг является эндотермическим, то есть для протекания реакции в процесс необходимо подавать тепло.

Затем, в так называемой «реакции конверсии водяного газа», монооксид углерода и водяной пар реагируют с использованием катализатора с образованием диоксида углерода и большего количества водорода. На заключительном этапе процесса, называемом «адсорбцией при переменном давлении», из газового потока удаляют диоксид углерода и другие примеси, оставляя практически чистый водород. Паровой риформинг также можно использовать для производства водорода из других видов топлива, таких как этанол, пропан или даже бензин.

Реакция паровой конверсии метана
CH 4 + H 2 O ( + тепло) → CO + 3H 2

Реакция сдвига в газе
CO + H 2 O → CO 2 + H 2 (+ небольшое количество тепла)

Частичное окисление

При частичном окислении метан и другие углеводороды природного газа реагируют с ограниченным количеством кислорода (обычно из воздуха), которого недостаточно для полного окисления углеводородов до двуокиси углерода и воды. При доступном количестве кислорода меньше стехиометрического продукты реакции содержат в основном водород и монооксид углерода (и азот, если реакция проводится с воздухом, а не с чистым кислородом), а также относительно небольшое количество диоксида углерода и других соединений. Впоследствии, в реакции конверсии водяного газа, монооксид углерода реагирует с водой с образованием диоксида углерода и большего количества водорода.

Частичное окисление — это экзотермический процесс, при котором выделяется тепло. Процесс, как правило, намного быстрее, чем паровой риформинг, и требует реактора меньшего размера. Как видно из химических реакций парциального окисления, в этом процессе на единицу вводимого топлива вначале выделяется меньше водорода, чем получается при паровой конверсии того же топлива.

Реакция парциального окисления метана
CH 4 + ½O 2 → CO + 2H 2 (+ тепло)

Реакция конверсии водяного газа
CO + H

2 O → CO 2 + H 2 (+ небольшое количество тепла)

Почему рассматривается этот путь?

Преобразование дешевого природного газа сегодня может обеспечить водород для электромобилей на топливных элементах (FCEV), а также для других целей. В долгосрочной перспективе Министерство энергетики ожидает, что производство водорода из природного газа будет дополнено производством из возобновляемых источников, атомной энергии, угля (с улавливанием и хранением углерода) и других низкоуглеродных внутренних энергетических ресурсов.

Использование бензина и выбросы ниже, чем у автомобилей с бензиновым двигателем внутреннего сгорания. Единственным продуктом выхлопной трубы FCEV является водяной пар, но даже с учетом предшествующего процесса производства водорода из природного газа, а также доставки и хранения его для использования в FCEV общие выбросы парниковых газов сокращаются вдвое, а количество нефти снижается более чем на 90%. по сравнению с современными бензиновыми автомобилями.

Для получения дополнительной информации см. «Водородная стратегия: обеспечение низкоуглеродной экономики» Управления по ископаемым источникам энергии и управлению выбросами углерода Министерства энергетики США.

Глава 1.

Летучая зола. Инженерный материал. Факты о летучей золе для инженеров-дорожников. Переработка. Экологичность. Тротуары

Глава 1. Летучая зола. Инженерный материал

  • <<
  • < Предыдущий
  • Содержимое
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Далее >
  • >>
    • Почему летучая зола?
    • Производство
    • Обращение с
    • Характеристики
    • Качество летучей золы
    Почему летучая зола?

    Что такое летучая зола? Летучая зола представляет собой тонкоизмельченный остаток, образующийся в результате сжигания пылевидного угля и переносимый из камеры сгорания выхлопными газами. В 2001 году было произведено более 61 миллиона метрических тонн (68 миллионов тонн) летучей золы9.0003

    Откуда берется летучая зола? Летучая зола образуется на угольных электрических и паровых электростанциях. Как правило, уголь измельчается и вдувается воздухом в камеру сгорания котла, где он немедленно воспламеняется, выделяя тепло и образуя расплавленный минеральный остаток. Котельные трубы извлекают тепло из котла, охлаждая дымовые газы и вызывая затвердевание расплавленного минерального остатка и образование золы. Крупные частицы золы, называемые зольным остатком или шлаком, падают на дно камеры сгорания, в то время как более легкие мелкие частицы золы, называемые летучей золой, остаются взвешенными в дымовых газах. Перед выпуском дымовых газов летучая зола удаляется с помощью устройств контроля выбросов твердых частиц, таких как электростатические осадители или рукавные фильтры (см. рис. 1-1).

    Где используется летучая зола? В настоящее время более 20 миллионов метрических тонн (22 миллиона тонн) летучей золы ежегодно используется в различных инженерных целях. Типичные области применения в дорожном строительстве включают: бетон на портландцементе (PCC), стабилизацию грунта и дорожного основания, текучие наполнители, цементные растворы, конструкционные наполнители и асфальтовые наполнители.

    Чем полезна летучая зола? Летучая зола чаще всего используется в качестве пуццолана в приложениях PCC. Пуццоланы представляют собой кремнийсодержащие или кремнисто-глиноземистые материалы, которые в тонкоизмельченном виде и в присутствии воды реагируют с гидроксидом кальция при обычных температурах с образованием вяжущих соединений.

    Уникальная сферическая форма и гранулометрический состав летучей золы делают ее хорошим минеральным наполнителем для горячих асфальтобетонных смесей (HMA) и улучшают текучесть жидкотекучих наполнителей и цементных растворов. Консистенция и обилие летучей золы во многих областях открывают уникальные возможности для использования в конструкционных заполнителях и других применениях на автомагистралях.

    Экологические преимущества. Использование летучей золы, особенно в бетоне, имеет значительные экологические преимущества, в том числе: (1) увеличение срока службы бетонных дорог и конструкций за счет повышения долговечности бетона, (2) чистое сокращение энергопотребления и выбросов парниковых газов и других вредных выбросов в атмосферу при полете зола используется для замены или вытеснения производимого цемента, (3) сокращения количества продуктов сгорания угля, которые необходимо утилизировать на свалках, и (4) сохранения других природных ресурсов и материалов.

    Рисунок 1-1: Способ переноса золы-уноса может быть сухим, мокрым или обоими.

    Производство

    Летучая зола образуется при сжигании угля в электроэнергетических или промышленных котлах. Существует четыре основных типа угольных котлов: пылеугольные (PC), кочегарные или с подвижной колосниковой решеткой, циклоны и котлы с кипящим слоем (FBC). Котел PC является наиболее широко используемым, особенно для крупных электростанций. Остальные котлы чаще используются на промышленных или когенерационных объектах. Летучая зола, образующаяся в котлах FBC, в этом документе не рассматривается. Летучая зола улавливается из дымовых газов с помощью электростатических пылеуловителей (ЭСО) или в тканевых коллекторах фильтров, обычно называемых рукавными фильтрами. Физические и химические характеристики летучей золы варьируются в зависимости от методов сжигания, источника угля и формы частиц.

    Таблица 1-1: Производство и использование летучей золы в 2001 году.
      Million Metric Tons Million Short Tons Percent
    Produced 61.84 68.12 100.0
    Used 19.98 22.00 32.3

    Как показано в таблице 1-1, из 62 миллионов метрических тонн (68 миллионов тонн) летучей золы, произведенной в 2001 году, было использовано только 20 миллионов метрических тонн (22 миллиона тонн), или 32 процента от общего объема производства. Ниже приводится разбивка использования летучей золы, большая часть которой используется в транспортной отрасли.

    9019 Сельское хозяйство0188
    Таблица 1-2: Использование летучей золы.
     
    Million Metric Tons
    Million Short Tons Percent
    Cement/Concrete 12. 16 13.40 60.9
    Flowable Fill 0.73 0.80 3.7
    Структурные наполнители 2,91 3,21 14,6
    Дорожная основа/подложка 0.93 1.02 4.7
    Soil Modification 0.67 0.74 3.4
    Mineral Filler 0.10 0.11 0.5
    Mining Applications 0.74 0,82 3,7
    Стабилизация/отверждение отходов 1,31 1,44 6,3
    0.02 0.02 0.1
    Miscellaneous/Other 0.41 0.45 2.1
    Totals 19. 98 22.00 100
    Handling

    The collected fly зола обычно транспортируется пневматическим способом из бункеров электрофильтра или фильтрующей ткани в силосы для хранения, где она хранится в сухом состоянии в ожидании утилизации или дальнейшей обработки, или в систему, в которой сухая зола смешивается с водой и транспортируется (шлюзируется) в пруд для хранения на месте. .

    Собранная в сухом виде зола обычно хранится и обрабатывается с использованием оборудования и процедур, аналогичных тем, которые используются для обработки портландцемента:

    • Летучая зола хранится в силосах, куполах и других хранилищах
    • Летучая зола может транспортироваться с помощью аэрожелобов, ковшовых конвейеров и винтовых конвейеров или может транспортироваться пневматически по трубопроводам в условиях положительного или отрицательного давления
    • Зола-унос транспортируется на рынки автоцистернами, железнодорожными вагонами и баржами/судами
    • Летучая зола может быть упакована в супермешки или мешки меньшего размера для специального применения

    Летучая зола, собранная в сухом виде, также может быть увлажнена водой и смачивающими агентами, если применимо, с использованием специального оборудования (кондиционированного) и вывезена крытыми самосвалами для специальных применений, таких как структурные заполнители. Летучая зола, кондиционированная водой, может складироваться на рабочих площадках. Открытый складируемый материал должен поддерживаться во влажном состоянии или накрываться брезентом, пластиком или аналогичными материалами для предотвращения выброса пыли.

    Характеристики

    Размер и форма. Летучая зола обычно мельче, чем портландцемент и известь. Летучая зола состоит из частиц размером с ил, которые обычно имеют сферическую форму, как правило, размером от 10 до 100 микрон (рис. 1-2). Эти маленькие стеклянные шарики улучшают текучесть и удобоукладываемость свежего бетона. Тонкость помола является одним из важных свойств, влияющих на пуццолановую реакционную способность летучей золы.

    Рисунок 1-2: Частицы летучей золы при 2000-кратном увеличении.

    Химия. Летучая зола состоит в основном из оксидов кремния, алюминия, железа и кальция. Магний, калий, натрий, титан и сера также присутствуют в меньшей степени. При использовании в качестве минеральной добавки в бетон летучая зола классифицируется как зола класса C или класса F в зависимости от ее химического состава. Американская ассоциация государственных служащих дорожного транспорта (AASHTO) M 295 [Спецификация C 618 Американского общества по испытаниям и материалам (ASTM)] определяет химический состав летучей золы класса C и класса F.

    Зола класса C обычно образуется из суббитуминозных углей и состоит в основном из кальциево-алюмосульфатного стекла, а также кварца, трехкальциевого алюмината и свободной извести (CaO). Зола класса C также называется летучей золой с высоким содержанием кальция, поскольку она обычно содержит более 20% CaO.

    Золы класса F обычно получают из битуминозных и антрацитовых углей и состоят в основном из алюмосиликатного стекла с добавлением кварца, муллита и магнетита. Летучая зола класса F или с низким содержанием кальция содержит менее 10 процентов СаО.

    Таблица 1-3: Образцы анализа оксидов золы и портландцемента
    Compounds Fly Ash Class F Fly Ash Class C Portland Cement
    SiO 2 55 40 23
    Al 2 0 3 26 17 4
    Fe 2 O 3 7 6 2
    CaO (Lime) 9 24 64
    MgO 2 5 2
    SO 3 1 3 2

    Цвет. Летучая зола может иметь цвет от желтовато-коричневого до темно-серого, в зависимости от ее химического и минерального состава. Желтовато-коричневые и светлые цвета обычно связаны с высоким содержанием извести. Коричневатый цвет обычно связан с содержанием железа. Цвет от темно-серого до черного обычно объясняется повышенным содержанием несгоревшего углерода. Цвет летучей золы обычно очень одинаков для каждой электростанции и угольного источника.

    Рисунок 1-3: Типичные цвета золы

    Качество летучей золы

    Требования к качеству летучей золы варьируются в зависимости от предполагаемого использования. На качество летучей золы влияют характеристики топлива (уголь), совместное сжигание топлива (битуминозный и полубитуминозный уголь) и различные аспекты процессов сжигания и очистки/сбора дымовых газов. Четыре наиболее важные характеристики летучей золы для использования в бетоне: потери при прокаливании (LOI), крупность, химический состав и однородность.

    LOI представляет собой показатель несгоревшего углерода (угля), остающегося в золе, и является важной характеристикой летучей золы, особенно для бетонных применений. Высокий уровень углерода, тип угля (например, активированный), взаимодействие растворимых ионов в летучей золе и непостоянство содержания углерода могут привести к серьезным проблемам с воздухововлечением в свежем бетоне и могут неблагоприятно повлиять на долговечность бетона. AASHTO и ASTM определяют ограничения для LOI. Однако некоторые государственные транспортные департаменты будут указывать более низкий уровень для LOI. Углерод также можно удалить из летучей золы.

    LOI не распространяется на некоторые виды использования летучей золы. Наполнитель в асфальте, текучий наполнитель и структурный наполнитель могут принимать летучую золу с повышенным содержанием углерода.

    Крупность летучей золы наиболее тесно связана с рабочим состоянием угольных дробилок и измельчаемостью самого угля. Для летучей золы, используемой в бетонных применениях, крупность определяется как весовой процент материала, оставшегося на сите 0,044 мм (№ 325). Более грубая градация может привести к менее реактивной золе и более высокому содержанию углерода. Пределы тонкости указаны в спецификациях ASTM и государственного транспортного департамента. Летучая зола может быть обработана просеиванием или воздушной классификацией для улучшения ее тонкости и реакционной способности.

    Некоторые не бетонные применения, такие как конструкционные заполнители, не зависят от крупности летучей золы. Однако другие области применения, такие как битумный наполнитель, в значительной степени зависят от крупности летучей золы и распределения ее частиц по размерам.

    Химический состав летучей золы напрямую связан с химическим составом исходного угля и любых дополнительных видов топлива или добавок, используемых в процессах сжигания или дожигания. Используемая технология контроля загрязнения также может влиять на химический состав летучей золы. Электростанции сжигают большие объемы угля из разных источников. Угли можно смешивать, чтобы максимизировать эффективность генерации или улучшить экологические показатели станции. Химический состав летучей золы постоянно проверяется и оценивается для конкретных применений.

    На некоторых станциях избирательно сжигают определенный уголь или модифицируют состав добавок, чтобы избежать ухудшения качества золы или придать зольной пыли желаемый химический состав и характеристики.

    Единообразие характеристик летучей золы от отгрузки к отгрузке необходимо для того, чтобы поставлять стабильный продукт. Химический состав и характеристики летучей золы обычно известны заранее, поэтому бетонные смеси разрабатываются и испытываются на работоспособность.

    Таблица 1-4: Руководящие документы, используемые для обеспечения качества летучей золы.
    ACI 229R Controlled Low Strength Material (CLSM)
    ASTM C 311 Sampling and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in Portland Cement Concrete
    AASHTO M 295
    ASTM C 618
    Летучая зола и сырой или кальцинированный природный пуццолан для использования в качестве минеральной добавки в бетоне на основе портландцемента
    ASTM C 593 Летучая зола и другие пуццоланы для использования с известью
    ASTM D 5239 Standard Practice for Characterizing Fly Ash for Use in Soil Stabilization
    ASTM E 1861 Guide for the Use of Coal Combustion By-Products in Structural Fills

    Quality Assurance и критерии контроля качества различаются для каждого вида использования летучей золы от штата к штату и от источника к источнику. В некоторых штатах требуются сертифицированные образцы из бункера на определенной основе для тестирования и утверждения перед использованием. Другие ведут списки утвержденных источников и принимают сертификаты качества летучей золы от поставщиков проекта. Степень требований к контролю качества зависит от предполагаемого использования, конкретной летучей золы и ее изменчивости. Требования к тестированию обычно устанавливаются отдельными специализированными агентствами.

    Рисунок 1-4: Микрофотографии летучей золы (слева) и портландцемента (справа).

    918 Дополнительные химические требования 8
    Таблица 1-5. Спецификации для летучей золы в PCC.
    AASHTO M 295 (ASTM C 618) — Класс F и C
          Класс F Класс C
    Химические требования SiO 2 + Al 2 O 3 + Fe 2 O 3 min% 70 1 50
    SiO 3 max% 5 5
    Moisture Content max% 3 3
    Потери при прокаливании (LOI) макс. % 5 1 5 1
    Доступные щелочи макс. % 1,5 1,5
    Физические требования Fineness (+325 Mesh) max% 34 34
    Pozzolanic activity/cement (7 days) min% 75 75
    Pozzolanic activity/cement (28 days ) мин.% 75 75
    Потребность в воде макс.% 105 105
    Autoclave expansion max% 0.8 0.8
    Uniform requirements 2 : density max% 5 5
    Uniform requirements 2 : Fineness max % 5 5
    Дополнительные физические требования Множественный коэффициент (LOI x тонкость)   255
    Increase in drying shrinkage max% .

    admin

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    2024 © Все права защищены.