Сложение и вычитание целых чисел
В данном уроке мы изýчим сложение и вычитание целых чисел.
Напомним, что целые числа — это все положительные и отрицательные числа, а также число 0. Например, следующие числа являются целыми:
−3, −2, −1, 0, 1, 2, 3
Положительные числа легко складываются и вычитаются, умножаются и делятся. К сожалению, этого нельзя сказать об отрицательных числах, которые смущают многих новичков своими минусами перед каждой цифрой.
Примеры сложения и вычитания целых чисел
Первое чему следует научиться это складывать и вычитать целые числа с помощью координатной прямой. Совсем необязательно рисовать координатную прямую. Достаточно воображать её в своих мыслях и видеть, где располагаются отрицательные числа и где положительные.
Рассмотрим следующее простейшее выражение
1 + 3
Значение данного выражения равно 4
1 + 3 = 4
Этот пример можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1, нужно сдвинуться вправо на три шага. В результате мы окажемся в точке, где располагается число 4. На рисунке можно увидеть, как это происходит:
Знак плюса в выражении 1 + 3 указывает нам, что нужно двигаться вправо в сторону увеличения чисел.
Пример 2. Найдём значение выражения 1 − 3
Значение данного выражения равно −2
1 − 3 = −2
Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −2. На рисунке можно увидеть, как это происходит:
Знак минуса в выражении 1 − 3 указывает нам, что нужно двигаться влево в сторону уменьшения чисел.
Вообще, если осуществляется сложение, то нужно двигаться вправо в сторону увеличения. Если же осуществляется вычитание, то нужно двигаться влево в сторону уменьшения.
Пример 3. Найти значение выражения −2 + 4
Значение данного выражения равно 2
−2 + 4 = 2
Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на четыре шага. В результате мы окажемся в точке, где располагается положительное число 2
Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на четыре шага, и оказались в точке, где располагается положительное число 2.
Пример 4. Найти значение выражения −1 − 3
Значение данного выражения равно −4
−1 − 3 = −4
Этот пример опять же можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −4
Видно, что мы сдвинулись из точки где располагается отрицательное число −1 в левую сторону на три шага, и оказались в точке, где располагается отрицательное число −4.
Пример 5. Найти значение выражения −2 + 2
Значение данного выражения равно 0
−2 + 2 = 0
Этот пример можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на два шага. В результате мы окажемся в точке, где располагается число 0
Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на два шага и оказались в точке, где располагается число 0.
Правила сложения и вычитания целых чисел
Чтобы сложить или вычесть целые числа, вовсе необязательно каждый раз воображать координатную прямую, и тем более рисовать её. Можно воспользоваться готовыми правилами.
Применяя правила, нужно обращать внимания на знак операции и знаки чисел, которые нужно сложить или вычесть. От этого будет зависеть какое правило применять.
Пример 1. Найти значение выражения −2 + 5
Здесь к отрицательному числу прибавляется положительное число. Другими словами, осуществляется сложение чисел с разными знаками, потому что −2 это отрицательное число, а 5 — положительное. Для таких случаев применяется следующее правило:
Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше.
Итак, посмотрим какой модуль больше:
Модуль числа 5 больше, чем модуль числа −2. Правило требует из большего модуля вычесть меньший. Поэтому мы должны из 5 вычесть 2, и перед полученным ответом поставить знак того числа, модуль которого больше.
У числа 5 модуль больше, поэтому знак этого числа и будет в ответе. То есть ответ будет положительным:
−2 + 5 = 5 − 2 = 3
Обычно записывают покороче: −2 + 5 = 3
Пример 2. Найти значение выражения 3 + (−2)
Здесь как и в предыдущем примере, осуществляется сложение чисел с разными знаками. 3 это положительное число, а −2 — отрицательное. Обратите внимание, что число −2 заключено в скобки, чтобы сделать выражение понятнее. Это выражение намного проще для восприятия, чем выражение 3 + −2.
Итак, применим правило сложения чисел с разными знаками. Как и в прошлом примере, из большего модуля вычитаем меньший модуль и перед ответом ставим знак того числа, модуль которого больше:
3 + (−2) = |3| − |−2| = 3 − 2 = 1
Модуль числа 3 больше, чем модуль числа −2, поэтому мы из 3 вычли 2, и перед полученным ответом поставили знак того числа, модуль которого больше. У числа 3 модуль больше, поэтому знак этого числа и поставлен в ответе. То есть ответ положительный.
Обычно записывают покороче 3 + (−2) = 1
Пример 3. Найти значение выражения 3 − 7
В этом выражении из меньшего числа вычитается большее. Для такого случая применяется следующее правило:
Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее, и перед полученным ответом поставить минус.
3 − 7 = 7 − 3 = −4
В этом выражении есть небольшая загвоздка. Вспомним, что знак равенства (=) ставится между величинами и выражениями тогда, когда они равны между собой.
Значение выражения 3 − 7 как мы узнали равно −4. Это означает, что любые преобразования которые мы будем совершать в данном выражении, должны быть равны −4
Но мы видим, что на втором этапе располагается выражение 7 − 3, которое не равно −4.
Чтобы исправить эту ситуацию, выражение 7 − 3 нужно взять в скобки и перед этой скобкой поставить минус:
3 − 7 = − (7 − 3) = − (4) = −4
В этом случае равенство будет соблюдаться на каждом этапе:
После того, как выражение вычислено, скобки можно убрать, что мы и сделали.
Поэтому, чтобы быть более точным, решение должно выглядеть так:
3 − 7 = − (7 − 3) = − (4) = − 4
Данное правило можно записать с помощью переменных. Выглядеть оно будет следующим образом:
a − b = − (b − a)
Большое количество скобок и знаков операций могут усложнять решение, казалось бы совсем простой задачи, поэтому целесообразнее научиться записывать такие примеры коротко, например 3 − 7 = − 4.
На самом деле сложение и вычитание целых чисел сводится только к сложению. Это означает, что если требуется осуществить вычитание чисел, эту операцию можно заменить сложением.
Итак, знакомимся с новым правилом:
Вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.
Например, рассмотрим простейшее выражение 5 − 3. На начальных этапах изучения математики мы ставили знак равенства и записывали ответ:
5 − 3 = 2
Но сейчас мы прогрессируем в изучении, поэтому надо приспосабливаться к новым правилам. Новое правило говорит, что вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.
На примере выражения 5 − 3 попробуем понять это правило. Уменьшаемое в данном выражении это 5, а вычитаемое это 3. Правило говорит, что для того, чтобы из 5 вычесть 3 , нужно к 5 прибавить такое число, которое будет противоположно 3. Противоположное для числа 3 это число −3. Записываем новое выражение:
5 + (−3)
А как находить значения для таких выражений мы уже знаем. Это сложение чисел с разными знаками, которое мы рассмотрели ранее. Чтобы сложить числа с разными знаками, мы из большего модуля вычитаем меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше:
5 + (−3) = |5| − |−3| = 5 − 3 = 2
Модуль числа 5 больше, чем модуль числа −3. Поэтому мы из 5 вычли 3 и получили 2. У числа 5 модуль больше, поэтому знак этого числа и поставили в ответе. То есть ответ положителен.
Поначалу быстро заменять вычитание сложением удаётся не всем. Это связано с тем, что положительные числа записываются без знака плюс.
Например, в выражении 3 − 1 знак минуса, указывающий на вычитание, является знаком операции и не относится к единице. Единица в данном случае является положительным числом, и у неё есть свой знак плюса, но мы его не видим, поскольку плюс перед положительными числами не записывают.
А стало быть, для наглядности данное выражение можно записать следующим образом:
(+3) − (+1)
Для удобства числа со своим знаками заключают в скобки. В таком случае заменить вычитание сложением намного проще.
В выражении (+3) − (+1) вычитаемое это число (+1), а противоположное ему число это (−1).
Заменим вычитание сложением и вместо вычитаемого (+1) записываем противоположное ему число (−1)
(+3) − (+1) = (+3) + (−1)
Дальнейшее вычисление не составит особого труда.
(+3) − (+1) = (+3) + (−1) = |3| − |−1| = 3 − 1 = 2
На первый взгляд покажется, какой смысл в этих лишних телодвижениях, если можно старым добрым методом поставить знак равенства и сразу записать ответ 2. На самом деле это правило ещё не раз нас выручит.
Решим предыдущий пример 3 − 7, используя правило вычитания. Сначала приведём выражение к понятному виду, расставив каждому числу свои знаки.
У тройки знак плюса, поскольку она является положительным числом. Минус, указывающий на вычитание не относится к семёрке. У семёрки знак плюса, поскольку она является положительным числом:
(+3) − (+7)
Заменим вычитание сложением:
(+3) − (+7) = (+3) + (−7)
Дальнейшее вычисление не составляет труда:
(+3) − (−7) = (+3) + (-7) = −(|−7| − |+3|) = −(7 − 3) = −(4) = −4
Пример 7. Найти значение выражения −4 − 5
Приведём выражение к понятному виду:
(−4) − (+5)
Перед нами снова операция вычитания. Эту операцию нужно заменить сложением. К уменьшаемому (−4) прибавим число, противоположное вычитаемому (+5). Противоположное число для вычитаемого (+5) это число (−5).
(−4) − (+5) = (−4) + (−5)
Мы пришли к ситуации, где нужно сложить отрицательные числа. Для таких случаев применяется следующее правило:
Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.
Итак, сложим модули чисел, как от нас требует правило, и поставим перед полученным ответом минус:
(−4) − (+5) = (−4) + (−5) = |−4| + |−5| = 4 + 5 = −9
Запись с модулями необходимо заключить в скобки и перед этими скобками поставить минус. Так мы обеспечим минус, который должен стоять перед ответом:
(−4) − (+5) = (−4) + (−5) = −(|−4| + |−5|) = −(4 + 5) = −(9) = −9
Решение для данного примера можно записать покороче:
−4 − 5 = −(4 + 5) = −9
или ещё короче:
−4 − 5 = −9
Пример 8. Найти значение выражения −3 − 5 − 7 − 9
Приведём выражение к понятному виду. Здесь все числа, кроме числа −3 являются положительными, поэтому у них будут знаки плюса:
(−3) − (+5) − (+7) − (+9)
Заменим вычитания сложениями. Все минусы, кроме минуса, стоящего перед тройкой, поменяются на плюсы, и все положительные числа поменяются на противоположные:
(−3) − (+5) − (+7) − (+9) = (−3) + (−5) + (−7) + (−9)
Теперь применим правило сложения отрицательных чисел. Чтобы сложить отрицательные числа, нужно сложить их модули и перед полученным ответом поставить минус:
(−3) − (+5) − (+7) − (+9) = (−3) + (−5) + (−7) + (−9) =
= −( |−3| + |−5| + |−7| + |−9| ) = −(3 + 5 + 7 + 9) = −(24) = −24
Решение данного примера можно записать покороче:
−3 − 5 − 7 − 9 = −(3 + 5 + 7 + 9) = −24
или ещё короче:
−3 − 5 − 7 − 9 = −24
Пример 9. Найти значение выражения −10 + 6 − 15 + 11 − 7
Приведём выражение к понятному виду:
(−10) + (+6) − (+15) + (+11) − (+7)
Здесь сразу две операции: сложение и вычитание. Сложение оставляем без изменения, а вычитание заменяем сложением:
(−10) + (+6) − (+15) + (+11) − (+7) = (−10) + (+6) + (−15) + (+11) + (−7)
Соблюдая порядок действий, выполним поочерёдно каждое действие, опираясь на ранее изученные правила. Записи с модулями можно пропустить:
Первое действие:
(−10) + (+6) = − (10 − 6) = − (4) = − 4
Второе действие:
(−4) + (−15) = − (4 + 15) = − (19) = − 19
Третье действие:
(−19) + (+11) = − (19 − 11) = − (8) = −8
Четвёртое действие:
(−8) + (−7) = − (8 + 7) = − (15) = − 15
Таким образом, значение выражения −10 + 6 − 15 + 11 − 7 равно −15
Примечание. Приводить выражение к понятному виду, заключая числа в скобки, вовсе необязательно. Когда происходит привыкание к отрицательным числам, это действие можно пропустить, поскольку оно отнимает время и может запутать.
Итак, для сложения и вычитания целых чисел необходимо запомнить следующие правила:
Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше.
Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее и перед полученным ответом поставить минус.
Вычесть одно число из другого означает, прибавить к уменьшаемому такое число, которое противоположно вычитаемому.
Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.
Задания для самостоятельного решения
Задание 1. Найдите значение выражения:
−50 + 40
Решение
−50 + 40 = −10
Показать решение
Задание 2. Найдите значение выражения:
25 + (−5)
Решение
25 + (−5) = 20
Показать решение
Задание 3. Найдите значение выражения:
−20 + 60
Решение
−20 + 60 = 40
Показать решение
Задание 4. Найдите значение выражения:
20 + (−8)
Решение
20 + (−8) = 12
Показать решение
Задание 5. Найдите значение выражения:
30 + (−50)
Решение
30 + (−50) = −20
Показать решение
Задание 6. Найдите значение выражения:
27 + (−19)
Решение
27 + (−19) = 8
Показать решение
Задание 7. Найдите значение выражения:
−17 + (−12) + (−8)
Решение
Показать решение
Задание 8. Найдите значение выражения:
−6 − 4
Решение
−6 − 4 = −6 + (−4) = −10
Показать решение
Задание 9. Найдите значение выражения:
−6 − (−4)
Решение
−6 − (−4) = −6 + 4 = −2
Показать решение
Задание 10. Найдите значение выражения:
−15 − (−15)
Решение
−15 − (−15) = −15 + 15 = 0
Показать решение
Задание 11. Найдите значение выражения:
−11 − (−14)
Решение
−11 − (−14) = −11 + 14 = 3
Показать решение
Задание 12. Найдите значение выражения:
−3 + 2 − (−1)
Решение
Показать решение
Задание 13. Найдите значение выражения:
−5 − 6 − 3
Решение
Показать решение
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже Опубликовано Автор
Уравнения и примеры с отрицательными числами и модулями.
Все рациональные числа, которые мы можем себе представить, можно разделить на положительные и отрицательные. Изучается данная тема в 5-6 классах. Начиная с этих классов, учащиеся решают примеры, уравнения и задачи, в которых могут быть как положительные, так и отрицательные числа.
Решение примеров с отрицательными числами без ошибок — очень важный математический навык. То же самое касается и решения уравнений с отрицательными числами. В этом контексте в школьном курсе рассматривается и понятие модуля числа.
Давайте сегодня разберем эти вопросы.
Чтобы отличить положительное число от отрицательного, перед отрицательным числом ставят знак минус.
Например:
«5» – положительное число
«-5» — отрицательное число Если рассматривать числа на координатной прямой, то все числа, находящиеся слева от нуля, будут называться отрицательными, а числа, находящиеся справа от нуля – будут, соответственно, положительными.
Правила сложения, вычитания, умножения и деления отрицательных чисел имеют свои особенности.
Например, если нам необходимо выполнить действие:
«7 + 5»
Т.е. сложить два положительных числа, мы механически складываем их величины и получаем результат:
7 + 5 = 12
Если даже у нас будет длинный и трудоемкий пример, принцип его решения будет точно такой же, если числа положительные, то мы механически складываем их:
7 + 5 + 21 + 17 + 19 + 25 = 94
Операция вычитания может быть уже не такой простой.
Если выражение:
7 – 5 = 2
Мы вычисляем легко, то выражение:
5 – 7 = — 2
Это уже серьезная проверка наших знаний в области отрицательных чисел. Здесь важно в ответе правильно поставить знаки «плюс» и «минус».
Здесь перед числом «7» стоит знак «минус». Получается из меньшего числа «5» нужно вычесть большее число «7».
Как не запутаться?
Есть несколько способов. Один из которых вот какой:
Необходимо вспомнить понятие модуля числа.
Модуль числа – это число, записанное в вертикальных скобках:
|5| или |-7|
Когда мы выводим число из модуля, мы оставляем только его значение, а минус убираем:
|5| = 5
|-7| = 7
Записываем наше выражение для модулей этих чисел:
|5| – |7|
Такая запись позволяет нам определить, какое число большее «по модулю», т.е. по своему абсолютному значению, без учета знака «минус» перед числом и стоит правее на числовой оси.
В нашем случае, это число «7».
Поэтому мы из большего «по модулю» числа вычитаем меньшее «по модулю» число и в ответе ставим тот знак (плюс или минус), который стоял в выражении перед большим «по модулю» числом:
|5| – |7| = — |7 — 5| = — |2| = -2
Второй способ вот какой:
Запишем:
5 + (– 7)
Представим каждое слагаемое как выражение двух чисел, с умножением на «-1», получим:
5 = — 1 · (- 5)
— 7 = — 1 · 7
Теперь сложим эти выражения, как в нашем примере, получим:
5 + (– 7) = (- 1 · (- 5)) + (- 1 · 7)
Вынесем за скобки «-1»:
-1·(- 5 + 7) = -1·(7 – 5) = -1· 2 = — 2
Когда мы выносим за скобку «-1», мы получаем возможность вычитать из большего числа меньшее, что гораздо удобнее.
Теперь мы знаем, как решать примеры с отрицательными числами.
Умножение на «-1» помогает нам вспомнить правила умножения и деления, в выражениях с положительными и отрицательными числами. Вот эти правила:
«Если умножать «минус» на «плюс», то получается в ответе «минус».»
«А если умножать «минус» на «минус», то получается в ответе «плюс».»
Проиллюстрируем все возможные варианты применения этих правил:
5 · 7 = 35
5 · (– 7) = — 35
(- 5) · 7 = — 35
(- 5) · (– 7) = 35
Возьмем более сложный случай, вычислим:
7 · (- 5) · 21 · (- 17)
Чтобы было проще, выполним вычисления по действиям:
1) 7 · (- 5) = — 35
2) 21 · (- 17) = — 357
3) (- 35) · (-357) = 12495
Таким образом:
7· (- 5) · 21 · (- 17) = 12495
Теперь рассмотрим, как решать уравнения с отрицательными числами и переменными.
Возьмем пример с уравнением:
3 + 4(5 – х) = 15
Сначала раскроем скобки:
3 + 4 · 5 + 4 · (- х) = 15
Обязательно обращаем внимание на минусы, стоящие перед числами и переменной «х», помним о приведенном выше правиле, получаем:
3 + 20 – 4х = 15
Приведем подобные (3 + 20 = 23) и запишем:
23 – 4х = 15
Переносим слагаемое без переменной «х» из левой части в правую, меняя при этом перед ним знак на противоположный
— 4х = 15 – 23
После приведения подобных в правой части уравнения (15 – 23 = — 8), получим:
— 4х = — 8
Деление отрицательных чисел проводим по тем же правилам, что и умножение:
х = — 8 : (- 4)
«Минус» делим на «минус», получаем «плюс»:
х = 2
Давайте теперь разберем примеры с модулем числа.

Напомню, что, когда мы выводим число из модуля, мы оставляем только его значение, а минус убираем.
Например:
|5| + |-7| = 5 + 7 = 12
|5| — |-7| = 5 — 7 = — 2
|5| · |-7| = 5 · 7 = 35
|-35| : |-7| = 35 : 7 = 5
Как видите, в примерах, где числа стоят под знаком модуля, необходимо следовать правилу:
«Сначала раскрываем скобки модуля, а потом проводим операции сложения, вычитания, умножения или деления».
Конечно, существуют и более сложные примеры с отрицательными числами и модулями. Чтобы познакомиться с правилами их решения, а также вспомнить все, что необходимо, связанное с модулями — следите за нашими уроками или обратитесь к репетитору на нашем сайте.
Основные правила для положительных и отрицательных чисел.
РАЗРЕШЕНИЕ
Принадлежит YourDictionary, Copyright YourDictionary
Числа больше нуля называются положительными числами, а числа меньше нуля — отрицательными числами. Это означает, что они падают по обе стороны от числовой прямой. Однако то, что они находятся на одной линии, не означает, что они следуют одним и тем же правилам! Продолжайте читать список основных правил использования положительных и отрицательных чисел в математике.
При использовании положительных и отрицательных чисел используются правила для чисел со знаком (числа с положительными или отрицательными знаками перед ними). Эти шаги, также известные как операции над числами со знаком, помогут вам избежать путаницы и решить математические задачи как можно быстрее и правильнее.
Следуйте этим правилам, чтобы определить лучший способ сложения, вычитания, умножения и деления положительных и отрицательных чисел. Помните, что если нет знака + или -, число положительное.
Реклама
Дополнение: одинаковые знаки, добавьте числа
Когда вы складываете два числа вместе, и они имеют одинаковый знак (два положительных или два отрицательных числа), сложите числа и сохраните знак. Например:
- 1 + 1 = 2
- 51 + 32 = 83
- -14 + (-6) = -20
- -196 + (-71) = -267
что уравнения с двумя положительные суммы имеют положительные суммы, а уравнения с двумя отрицательными числами имеют отрицательные суммы. Если вы используете числовую прямую для решения задачи, добавление двух положительных чисел приведет к положительной стороне, а добавление двух отрицательных чисел приведет к отрицательной стороне.
Сложение: разные знаки, вычитание чисел
Если вы складываете положительные и отрицательные числа вместе, вычтите меньшее число из большего и используйте знак из большего числа. Например:
- 6 + (-5) = 1
- -17 + 22 = 5
- -100 + 54 = -45
- 299 + (-1) = 298
As вы можете видеть, добавляя числа с разными знаками на самом деле является формой вычитания. При использовании числовой прямой ваша сумма будет ближе к нулю.
Реклама
Вычитание: Переключение на сложение
Вычитание положительных и отрицательных чисел означает, что вы складываете противоположные числа или добавите обратное. Замените знак вычитания на сложение, а следующий за ним знак измените на противоположный. Затем следуйте инструкциям по добавлению. Например:
- -3 — (+5) становится -3 + (-5) = -8
- 9 — (-7) становится 9 + (+7) = 16
- -14 — (+8) становится -14 + (-8) = -22
- 25 — (-90) становится 25 + (+90) = 115
Хороший совет: всякий раз, когда вы видите знак минус и знак минус вместе, например, в 9 — (-7), немедленно превращайте их в положительные знаки. Отрицательные знаки компенсируют друг друга, и уравнение становится задачей на сложение.
Умножение и деление: одинаковый знак, положительный результат
Кажется, что умножение и деление сложнее, чем сложение и вычитание, но на самом деле они намного проще. Правило умножения положительных и отрицательных чисел с одинаковым знаком (два положительных или два отрицательных) состоит в том, что произведение всегда будет положительным. Например:
- 8 x 4 = 32
- (-8) x (-4) = 32
- 10 x 9 = 90
- (-10) x (-9) = 90
деление . При делении числа на другое число с тем же знаком частное (ответ) положительно. Например:
- 12 ÷ 6 = 2
- -12 ÷ (-6) = 2
- 100 ÷ 5 = 20
- -100 ÷ (-5) = 20
Реклама
ОПИСАНИЕ
правила умножения и деления двух чисел, положительных и отрицательных
ИСТОЧНИК
Created by Karina Goto for YourDictionary 9 0005
РАЗРЕШЕНИЕ
Принадлежит YourDictionary, Copyright YourDictionary
Умножение и деление: обратный знак, отрицательный результат
При умножении положительного и отрицательного числа произведение всегда будет отрицательным. Неважно, в каком порядке стоят знаки. Например:
- 6 х (-7) = -42
- -7 х 6 = -42
- 12 х (-11) = -132
- -11 х 12 = -132
Во всех этих случаях , вам сначала нужно умножить или разделить числа. Затем решите, является ли произведение или частное положительным (два положительных или два отрицательных в уравнении) или отрицательным (один положительный и один отрицательный в уравнении).
Еще один способ подумать о сложении положительных и отрицательных чисел — посмотреть на знаки подряд. Два одинаковых знака подряд (++ или —) означают, что вы складываете числа, а два разных знака подряд (+- или —) означают, что вы вычитаете. Например:
- 7 + (+2) = 9 (++ похожи на знаки, поэтому уравнение представляет собой сложение)
- 9 + (-8) = 1 (+- не являются знаками, поэтому уравнение представляет собой вычитание)
- 11 — (+13) = 2 (-+ разные знаки, поэтому уравнение представляет собой вычитание)
- 15 — (-10) = 25 (— похожи на знаки, поэтому уравнение представляет собой сложение)
Этот метод следует те же правила, что и выше, но они могут помочь вам решить проблему быстрее, если вы предпочитаете работать над знаками заранее. Как только вы концептуально поймете положительные и отрицательные числа, вы сможете решить, какой метод лучше всего подходит для вас.
Объявление
Понимание основ математики
Как только вы познакомитесь с основами математики и ее правилами, перед вами откроется весь математический мир. В отличие от других предметов, в математике нет нюансов или интерпретаций — она просто такая, какая есть! Для дополнительной математической практики ознакомьтесь с инструкциями по решению задач на деление в длину (с примерами). Вы также можете просмотреть различные типы чисел в математике перед следующим заданием по математике.
Положительные и отрицательные числа | SkillsYouNeed
Стандартные числа, большие нуля, описываются как «положительные» числа. Мы не ставим перед ними знак плюс (+), потому что нам это не нужно, так как общее понимание таково, что числа без знака положительны.
Числа меньше нуля называются «отрицательными». Перед ними стоит знак минус (-), указывающий, что они меньше нуля (например, -10 или ‘ минус 10 ‘).
Визуализация отрицательных и положительных чисел
Вероятно, самый простой способ визуализировать отрицательные и положительные числа — использовать числовую прямую, инструмент, с которым вы, возможно, хорошо знакомы, особенно если ваши дети учатся в начальной школе.
Это выглядит примерно так:
Числовая линия может помочь вам визуализировать как положительные, так и отрицательные числа, а также операции (сложение и вычитание), которые вы можете с ними выполнять.
Когда вам нужно вычислить сложение или вычитание, вы начинаете с первого числа и перемещаете второе число разрядов вправо (для сложения) или влево (для вычитания).
Эта числовая линия является упрощенной версией, но вы можете нарисовать их, включив в них все числа, если хотите. Большим преимуществом числовой линии является то, что ее очень легко нарисовать самому себе на обратной стороне конверта или на клочке бумаги, а также очень сложно ошибиться в расчетах. Пока вы внимательно подсчитываете количество мест, которые вы перемещаете, вы получите правильный ответ.
Вычитание отрицательных чисел
Если вы вычитаете отрицательное число, два отрицательных числа складываются в положительное.
−10−(−10) не равно −20. Вместо этого вы можете думать об этом как о повороте одного из отрицательных знаков вертикально, чтобы пересечь другой и сделать плюс. Тогда сумма будет равна −10+10 = 0.
Краткое примечание о скобках
Для ясности: вы никогда не будете писать два отрицательных знака рядом без скобок.
Таким образом, если вас попросят вычесть отрицательное число, оно всегда будет заключено в квадратные скобки, чтобы вы могли видеть, что использование двух отрицательных знаков было преднамеренным.
-10—10 неверно (и сбивает с толку)
-10-(-10) правильно (и более ясно)
Умножение и деление с положительными и отрицательными числами
При умножении или делении с комбинациями положительные и отрицательные числа, вы можете упростить процесс, сначала игнорируя знаки (+/-) и просто умножая или разделяя числа, как если бы они оба были положительными. Получив числовой ответ, вы можете применить очень простое правило для определения знака ответа:
- Когда знаки двух чисел совпадают с , ответ будет положительным .
- Когда знаки двух чисел отличаются от , ответ будет отрицательным .
Итак:
(положительное число) × (положительное число) = положительное число
(отрицательное число) × (отрицательное число) = положительное число
Но:
900 97 (положительное число) × (отрицательное число) = отрицательное число
В качестве побочного вопроса, это каким-то образом объясняет, почему вы не можете получить квадратный корень из отрицательного числа (подробнее об этом читайте на нашей странице Специальные числа и понятия ). Квадратный корень — это число, которое нужно умножить само на себя, чтобы получить число. Нельзя умножать число само на себя, чтобы получить отрицательное число. Чтобы получить отрицательное число, вам нужно одно отрицательное и одно положительное число.
Правило работает так же, когда у вас есть более двух чисел для умножения или деления. Четное количество отрицательных чисел даст положительный ответ. Нечетное количество отрицательных чисел даст отрицательный ответ.
Почему умножение двух отрицательных чисел дает положительный ответ?
Тот факт, что умножение отрицательного числа на другое отрицательное число дает положительный результат, часто сбивает с толку и кажется нелогичным.
Чтобы объяснить, почему это так, вернитесь к числовым линиям, использованным ранее в этой статье, поскольку они помогают объяснить это визуально.
- Во-первых, представьте, что вы стоите на числовой прямой в нулевой точке и смотрите в положительном направлении, то есть в сторону 1, 2 и так далее. Вы делаете два шага вперед, останавливаетесь, затем делаете еще два шага.
Вы прошли 2 × 2 шага = 4 шага.
Следовательно, положительный × положительный = положительный - Теперь вернитесь к нулю и повернитесь лицом в отрицательном направлении, то есть к −1, −2 и т. д. Сделайте два шага вперед, затем еще два. Теперь вы стоите на −4. Вы переместились на 2 × -2 шага = -4 шага.
Следовательно, отрицательный × положительный = отрицательный
В обоих этих примерах вы двигались вперед (т. е. в том направлении, в котором вы смотрели), положительное движение.
- Снова вернитесь к нулю, но на этот раз вы пойдете назад (негативное движение). Снова повернитесь лицом в положительном направлении и сделайте два шага назад. Теперь вы стоите на −2. Положительное (направление, в котором вы смотрите) и отрицательное (направление, в котором вы движетесь) приводят к отрицательному движению.
Следовательно, положительный × отрицательный = отрицательный - Наконец, снова вернитесь к нулю, повернитесь лицом в отрицательном направлении.
Теперь сделайте два шага назад , а затем еще два назад. Вы стоите на +4. Повернувшись лицом в отрицательном направлении и пройдя назад ( два отрицания ), вы достигли положительного результата.
Следовательно, отрицательный × отрицательный = положительный
- Два отрицания компенсируют друг друга. Вы можете увидеть это в речи:
- «Просто сделай это!» позитивное побуждение к действию.
- «Не делай этого!» просит кого-то не делать что-то. Это минус.
- «Не делай этого» означает «пожалуйста, сделай это». Два отрицания компенсируются и дают положительный результат как в математике, так и в речи.
- Знаки складываются физически. Когда у вас есть два отрицательных знака, один переворачивается, и они складываются вместе, чтобы получить положительный. Если у вас есть положительный и отрицательный, остается одна черточка, и ответ отрицательный.