Ученые подтвердили, что до нашей Вселенной существовало еще что-то
https://ria.ru/20200730/1575151429.html
Ученые подтвердили, что до нашей Вселенной существовало еще что-то
Ученые подтвердили, что до нашей Вселенной существовало еще что-то — РИА Новости, 31.07.2020
Ученые подтвердили, что до нашей Вселенной существовало еще что-то
Американские ученые с помощью математических инструментов описали неоднородности реликтового космического излучения, возникшего непосредственно после зарождения РИА Новости, 31.07.2020
2020-07-30T11:11
2020-07-30T11:11
2020-07-31T09:14
наука
космос — риа наука
открытия — риа наука
физика
теория большого взрыва
/html/head/meta[@name=’og:title’]/@content
/html/head/meta[@name=’og:description’]/@content
https://cdnn21.img.ria.ru/images/152176/23/1521762391_0:52:1224:741_1920x0_80_0_0_8ffc5fd9c16abfeef40937f2c0ccba93.jpg
МОСКВА, 30 июл — РИА Новости. Американские ученые с помощью математических инструментов описали неоднородности реликтового космического излучения, возникшего непосредственно после зарождения Вселенной. Авторы считают, что их результаты подтверждают правильность гипотезы Большого отскока, согласно которой возникновение нашей Вселенной стало результатом распада некой «предыдущей» вселенной. Результаты опубликованы в журнале Physical Review Letters.В то время как теория общей относительности Эйнштейна объясняет широкий спектр астрофизических и космологических явлений, некоторые свойства Вселенной остаются загадкой. В частности, она не может объяснить неравномерность распределения в пространстве галактик и темной материи. Сотрудники Университета штата Пенсильвания начиная с 1980-х годов разрабатывают космологическую парадигму, основанную на представлении о петлевой квантовой гравитации. Эта парадигма, получившая название петлевой квантовой космологии, описывает все современные крупные структуры во Вселенной как квантовые флуктуации пространства-времени, имевшие место при рождении мира.Согласно общепринятой теории Большого взрыва, все началось с сингулярности — состояния, в котором вся материя и энергия были сжаты в одну точку. Затем, в первые доли секунды, в период, называемый инфляцией, космос раздулся до огромных размеров. Но теория Большого взрыва не объясняет, что было до сингулярности, поэтому это состояние невозможно описать с точки зрения законов физики и математики.Ученые из Университета штата Пенсильвания придерживаются альтернативной гипотезы Большого отскока, согласно которой текущая расширяющаяся Вселенная возникла из сверхсжатой массы вселенной предыдущей фазы. Для описания этого состояния они используют универсальный математический аппарат, объединяющий квантовую механику и теорию относительности. Происхождение структуры Вселенной авторы прослеживают до мельчайших неоднородностей, фиксируемых на фоне сверхвысокочастотного реликтового космического излучения, которое было испущено, когда Вселенной было всего 380 тысяч лет. Но само это излучение обладает тремя загадочными аномалиями, которые трудно объяснить с помощью классической физики. Эти отклонения настолько серьезные, что многие физики начали говорить о кризисе в космологии. В новом исследовании ученые доказывают, что с точки зрения петлевой квантовой космологии описание инфляции устраняет две основные аномалии в распределении реликтового излучения.»Используя космологию квантовой петли, мы естественным образом разрешили две из этих аномалий, что позволяет избежать потенциального кризиса, — приводятся в пресс-релизе университета слова одного из авторов исследования Чон Дон Хи (Donghui Jeong), доцента кафедры астрономии и астрофизики. — Присутствие этих аномалий говорит о том, что мы живем в исключительной Вселенной».Авторы считают, что неоднородности реликтового излучения являются результатом неизбежных квантовых флуктуаций в ранней Вселенной. Во время ускоренной фазы расширения — инфляции — эти изначально крошечные флуктуации растягивались под воздействием силы тяжести, отражаясь в наблюдаемых неоднородностях.»Стандартная инфляционная парадигма, основанная на общей теории относительности, рассматривает пространство-время как гладкий континуум, — говорит первый автор работы, профессор Абхай Аштекар (Abhay Ashtekar), директор Института гравитации и космоса штата Пенсильвания. — Ткань рубашки тоже выглядит как двухмерная поверхность, но при ближайшем рассмотрении вы можете увидеть, что она соткана из плотно упакованных одномерных нитей. Так и в ткань пространства-времени вплетены квантовые нити. Учитывая эти нити, петлевая квантовая космология позволяет нам выйти за пределы континуума, описываемого общей теорией относительности». Ученые надеются, что новые спутниковые миссии, такие как LiteBIRD и Cosmic Origins Explorer, нацеленные на обнаружение следов первичных гравитационных волн на фоне реликтового излучения, подтвердят их выводы.
https://ria.ru/20200228/1565310976.html
https://ria.ru/20190712/1556438229.html
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2020
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og. xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
1920
1080
true
1920
1440
true
https://cdnn21.img.ria.ru/images/152176/23/1521762391_84:0:1140:792_1920x0_80_0_0_ef706c64dabeaf9e130102eb73595730.jpg
1920
1920
true
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
космос — риа наука, открытия — риа наука, физика, теория большого взрыва
Наука, Космос — РИА Наука, Открытия — РИА Наука, Физика, Теория большого взрыва
МОСКВА, 30 июл — РИА Новости. Американские ученые с помощью математических инструментов описали неоднородности реликтового космического излучения, возникшего непосредственно после зарождения Вселенной. Авторы считают, что их результаты подтверждают правильность гипотезы Большого отскока, согласно которой возникновение нашей Вселенной стало результатом распада некой «предыдущей» вселенной. Результаты опубликованы в журнале Physical Review Letters.
В то время как теория общей относительности Эйнштейна объясняет широкий спектр астрофизических и космологических явлений, некоторые свойства Вселенной остаются загадкой. В частности, она не может объяснить неравномерность распределения в пространстве галактик и темной материи.
Сотрудники Университета штата Пенсильвания начиная с 1980-х годов разрабатывают космологическую парадигму, основанную на представлении о петлевой квантовой гравитации. Эта парадигма, получившая название петлевой квантовой космологии, описывает все современные крупные структуры во Вселенной как квантовые флуктуации пространства-времени, имевшие место при рождении мира.
Согласно общепринятой теории Большого взрыва, все началось с сингулярности — состояния, в котором вся материя и энергия были сжаты в одну точку. Затем, в первые доли секунды, в период, называемый инфляцией, космос раздулся до огромных размеров. Но теория Большого взрыва не объясняет, что было до сингулярности, поэтому это состояние невозможно описать с точки зрения законов физики и математики.
Ученые из Университета штата Пенсильвания придерживаются альтернативной гипотезы Большого отскока, согласно которой текущая расширяющаяся Вселенная возникла из сверхсжатой массы вселенной предыдущей фазы. Для описания этого состояния они используют универсальный математический аппарат, объединяющий квантовую механику и теорию относительности.
28 февраля 2020, 10:13Наука
Ученые зафиксировали мощнейший взрыв во Вселенной
Происхождение структуры Вселенной авторы прослеживают до мельчайших неоднородностей, фиксируемых на фоне сверхвысокочастотного реликтового космического излучения, которое было испущено, когда Вселенной было всего 380 тысяч лет.
Но само это излучение обладает тремя загадочными аномалиями, которые трудно объяснить с помощью классической физики. Эти отклонения настолько серьезные, что многие физики начали говорить о кризисе в космологии.
В новом исследовании ученые доказывают, что с точки зрения петлевой квантовой космологии описание инфляции устраняет две основные аномалии в распределении реликтового излучения.
«Используя космологию квантовой петли, мы естественным образом разрешили две из этих аномалий, что позволяет избежать потенциального кризиса, — приводятся в пресс-релизе университета слова одного из авторов исследования Чон Дон Хи (Donghui Jeong), доцента кафедры астрономии и астрофизики. — Присутствие этих аномалий говорит о том, что мы живем в исключительной Вселенной».
Авторы считают, что неоднородности реликтового излучения являются результатом неизбежных квантовых флуктуаций в ранней Вселенной. Во время ускоренной фазы расширения — инфляции — эти изначально крошечные флуктуации растягивались под воздействием силы тяжести, отражаясь в наблюдаемых неоднородностях.
«Стандартная инфляционная парадигма, основанная на общей теории относительности, рассматривает пространство-время как гладкий континуум, — говорит первый автор работы, профессор Абхай Аштекар (Abhay Ashtekar), директор Института гравитации и космоса штата Пенсильвания. — Ткань рубашки тоже выглядит как двухмерная поверхность, но при ближайшем рассмотрении вы можете увидеть, что она соткана из плотно упакованных одномерных нитей. Так и в ткань пространства-времени вплетены квантовые нити. Учитывая эти нити, петлевая квантовая космология позволяет нам выйти за пределы континуума, описываемого общей теорией относительности».
Ученые надеются, что новые спутниковые миссии, такие как LiteBIRD и Cosmic Origins Explorer, нацеленные на обнаружение следов первичных гравитационных волн на фоне реликтового излучения, подтвердят их выводы.
12 июля 2019, 08:00Наука
Ученые ищут разгадку самых странных сигналов из глубин Вселенной
Как появилась Вселенная?
Как появилась Вселенная?
Одним из основных вопросов, которые не выходят из сознания человека, всегда был и является вопрос: «как появилась Вселенная?». Конечно же, однозначного ответа на данный вопрос нет, и вряд ли будет получен в скором времени, однако наука работает в этом направлении и формирует некую теоретическую модель зарождения нашей Вселенной. Прежде всего следует рассмотреть основные свойства Вселенной, которые должна описываться в рамках космологической модели:
- Модель должна учитывать наблюдаемые расстояния между объектами, а также скорость и направление их движения. Подобные расчеты основываются на законе Хаббла: cz = H0D, где z – красное смещение объекта, D – расстояния до этого объекта, c – скорость света.
- Возраст Вселенной в модели должен превышать возраст самых старых в мире объектов.
- Модель должна учитывать первоначальное обилие элементов.
- Модель должна учитывать наблюдаемую крупномасштабную структуру Вселенной.
- Модель должна учитывать наблюдаемый реликтовый фон.
Крупномасштабная структура Вселенной
Далее рассмотрим подробнее наиболее популярные в научном сообществе концепции зарождения мира.
Содержание:
- 1 Краткая история Вселенной
- 2 Материалы по теме
- 3 Откуда появилась Вселенная?
- 3.1 Циклические модели
- 3.2 Другие модели возникновения Вселенной
- 4 Итоги
Краткая история Вселенной
Рассмотрим кратко общепризнанную теорию возникновения и ранней эволюции Вселенной, которая поддерживается большинством ученых. Сегодня под теорией Большого взрыва подразумевают комбинацию модели горячей Вселенной с Большим взрывом. И хотя данные концепции сперва существовали независимо друг от друга, в результате их объединение удалось объяснить первоначальный химический состав Вселенной, а также наличие реликтового излучения.
Согласно данной теории, Вселенная возникла около 13,77 млрд лет назад из некоторого плотного разогретого объекта — сингулярное состояние, плохо поддающееся описанию в рамках современной физики. Проблема космологической сингулярности, помимо всего прочего, в том, что при ее описании большинство физических величин, вроде плотности и температуры, стремятся к бесконечности. При этом, известно, что при бесконечной плотности энтропия (мера хаоса) должна устремляться к нулю, что никак не совмещается с бесконечной температурой.
Сингулярность в представлении художника
- Первые 10-43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.
Материалы по теме
- Планковский момент – момент окончания квантового хаоса, который выпадает на 10-43 секунду. В этот момент параметры Вселенной равнялись планковским величинам, вроде планковской температуры (около 1032 К). В момент планковской эпохи все четыре фундаментальные взаимодействия (слабое, сильное, электромагнитное и гравитационное) являлись объединенными в некое одно взаимодействие. Рассматривать планковский момент как некоторый продолжительный период – не представляется возможным, так как с параметрами меньше планковских современная физика не работает.
- Стадия инфляции. Следующей стадией истории Вселенной стала инфляционная стадия. В первый момент инфляции от единого суперсимметричного поля (ранее включающего поля фундаментальных взаимодействий) отделилось гравитационное взаимодействие. В этот период вещество обладает отрицательным давлением, что вызывает экспоненциальный рост кинетической энергии Вселенной. Проще говоря, в данный период Вселенная стала очень быстро раздуваться, а ближе концу энергия физических полей переходит в энергию обычных частиц. В конце данной стадии значительно повышается температура вещества и излучения. Вместе с окончанием стадии инфляции выделяется и сильное взаимодействие. Также в этот момент возникает барионная асимметрия Вселенной.
- Стадия радиационного доминирования. Следующая стадия развития Вселенной, которая включает несколько этапов. На этой стадии температура Вселенной начинает понижаться, образуются кварки, затем адроны и лептоны. В эпоху нуклеосинтеза происходит образование начальных химических элементов, синтезируется гелий. Однако, излучение все еще преобладает над веществом.
- Эпоха доминирования вещества. Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон. Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.
Вышеописанная картина сложена из нескольких основополагающих теорий и дает общие представление о формировании Вселенной на ранних этапах ее существования.
Эволюция Вселенной
Откуда появилась Вселенная?
Если Вселенная возникла из космологической сингулярности, то откуда взялась сама сингулярность? На данный вопрос дать точный ответ, пока, невозможно. Рассмотрим некоторые космологические модели, затрагивающие «рождение Вселенной».
Циклические модели
Данные модели строятся на утверждении, что Вселенная существовала всегда и со временем лишь меняется ее состояние, переходя от расширения к сжатию – и обратно.
- Модель Стейнхардта-Турока. Данная модель строится на теории струн (М-теории), так как использует такой объект как «брана». Согласно этой модели видимая Вселенная располагается внутри 3-бране, которая периодически, раз в несколько триллионов лет, сталкивается с другой 3-браной, что вызывает подобие Большого Взрыва. Далее наша 3-брана начинает отдаляться от другой и расширяться. В какой-то момент доля темной энергии получает первенство и скорость расширения 3-браны растет. Колоссальное расширение рассеивает вещество и излучение настолько, что мир становится почти однородным и пустым. В конце концов происходит повторное столкновение 3-бран, в результате чего наша возвращается к начальной фазе своего цикла, вновь зарождая нашу «Вселенную».
Моделирование бран
- Теория Лориса Баума и Пола Фрэмптона также гласит о цикличности Вселенной. Согласно их теории последняя после Большого Взрыва будет расширяться за счет темной энергии до тех пор, пока не приблизится к моменту «распада» самого пространства-времени – Большой Разрыв. Как известно, в «замкнутой системе энтропия не убывает» (второе начало термодинамики). Из этого утверждения следует, что Вселенная не может вернуться к исходному состоянию, так как во время такого процесса энтропия должна убывать. Однако эта проблема решается рамках данной теории. Согласно теории Баума и Фрэмптона за миг до Большого Разрыва Вселенная распадается на множество «лоскутов», каждый из которых обладает довольно малым значением энтропии. Испытывая ряд фазовых переходов, данные «лоскуты» бывшей Вселенной порождают материю и развиваются аналогично первоначальной Вселенной. Эти новые миры не взаимодействуют друг с другом, так как разлетаются со скоростью больше скорости света. Таким образом, ученые избежали и космологической сингулярности, с которой начинается рождение Вселенной согласно большинству космологических теорий. То есть в момент конца своего цикла Вселенная распадается на множество других невзаимодействующих миров, которые станут новыми вселенными.
- Конформная циклическая космология – циклическая модель Роджера Пенроуза и Ваагна Гурзадяна. Согласно данной модели Вселенная способна перейти в новый цикл, не нарушая второе начало термодинамики. Данная теория опирается на предположение, что черные дыры уничтожают поглощенную информацию, что неким образом «законно» понижает энтропию Вселенной. Тогда каждый такой цикл существования Вселенной начинается с подобия Большого Взрыва и заканчивается сингулярностью.
Инфографика конформной циклической космологии
Другие модели возникновения Вселенной
Среди других гипотез, объясняющих появление видимой Вселенной наиболее популярны две следующие:
- Хаотическая теория инфляции — теория Андрея Линде. Согласно данной теории существует некоторое скалярное поле, которое неоднородно во всем своем объеме. То есть в различных областях вселенной скалярное поле имеет разное значение. Тогда в областях, где поле слабое – ничего не происходит, в то время как области с сильных полем начинают расширяться (инфляция) за счет его энергии, образуя при этом новые вселенные. Такой сценарий подразумевает существование множества миров, возникших неодновременно и имеющих свой набор элементарных частиц, а, следовательно, и законов природы.
- Теория Ли Смолина – предполагает, что Большой Взрыв не является началом существования Вселенной, а – лишь фазовым переходом между двумя ее состояниями. Так как до Большого Взрыва Вселенная существовала в форме космологической сингулярности, близкой по своей природе к сингулярности черной дыры, Смолин предполагает, что Вселенная могла возникнуть из черной дыры.
Рождение Вселенной из черной дыры
Итоги
Несмотря на то, что циклические и другие модели отвечают на ряд вопросов, ответы на которые не может дать теория Большого Взрыва, в том числе проблема космологической сингулярности. Все же в комплекте с инфляционной теорией Большой Взрыв более цельно объясняет возникновение Вселенной, а также сходится с множеством наблюдений.
Понравилась запись? Расскажи о ней друзьям!
Просмотров записи: 46253
Запись опубликована: 02. 06.2017
Автор: Владимир Соловьев
Как возникла Вселенная и что с ней будет дальше?
Как возникла Вселенная и что с ней будет дальше? | Colta.ru6 августа 2015Colta SpecialsЛекторий Политеха
142185
Была ли крокоутка?Чем занимаются генетики?Кто на Луне главный?Как возникает лжеистория?Что делают медики на войне?Как рассказать о блокаде Ленинграда?Что придумал Толкин?Как возникла Вселенная и что с ней будет дальше?Как «Радио Свобода» сохранило запрещенную литературуКак спорт превратился в шоу-бизнес?Почему мы такие умные?Роботы и музыка
Астрофизик Борис Штерн о том, что было до Большого взрыва, и о том, за что в самом ближайшем будущем дадут Нобелевскую премию
В Лектории Политехнического музея астрофизик и один из основателей и главный редактор газеты «Троицкий вариант» Борис Штерн прочитал лекцию о происхождении Вселенной.
Моя лекция будет немножко нестандартной. Обычно лектор сначала что-то рассказывает, а люди потом задают вопросы. Но сперва я задам вам три или четыре вопроса, чтобы размяться и заодно протестировать аудиторию. Как на ЕГЭ — вопрос и несколько вариантов ответа. А вы поднятием рук будете голосовать. Заодно повеселимся немножко.
Первый вопрос: возраст Вселенной. И три варианта: Вселенная существует вечно, ее возраст 20 млрд лет или 14 млрд лет (правильный ответ — 14 млрд лет. — Ред.). Следующий вопрос: размер Вселенной. И варианты: 14 млрд световых лет, Вселенная бесконечна, размер Вселенной неизвестен, но он точно больше 14 млрд световых лет (правильный ответ — размер неизвестен. — Ред.). Третий вопрос: температура Вселенной. Ноль градусов, три градуса Кельвина, у Вселенной нет температуры (правильный ответ — три градуса Кельвина, а точнее, два и семь. — Ред.). С температурой разобрались, теперь вопрос: сколько измерений у Вселенной? Три, четыре или одиннадцать? На самом деле это дело вкуса — либо четыре, либо одиннадцать. И то, и другое правильно.
Что такое космология? Это наука о Вселенной как целом. «Земля на трех китах» — это космология. И «хрустальная сфера» тоже. Но первая космологическая теория, которую вообще как-то можно обсуждать в рамках науки, — это бесконечная вечная Вселенная, идущая от Джордано Бруно и Галилея. Правда, уже в XIX веке было понятно, что что-то не так с этой бесконечностью. Первый парадокс — так называемый парадокс Ольберса — почему ночью небо темное. Из простой геометрии бесконечной Вселенной: любой луч в любом направлении упрется в звезду, и все небо должно сиять, как поверхность Солнца, и все в такой Вселенной сгорит. Другой парадокс — гравитационная неустойчивость Вселенной. Она должна сжиматься комками все больше и больше. Третий парадокс — температуры везде во Вселенной должны выровняться. Люди думали: да, парадоксы, конечно, серьезные, но как-нибудь это все рассосется, найдет наука выход из этого тупика. Но — не рассосалось. То, что я рассказываю, — первая революция в космологии — 1916 год.
Альберт Эйнштейн и его теория гравитации (он сам не сразу понял, что это приговор бесконечной Вселенной). Александр Фридман, который первым сказал, что Вселенная не стационарна и что это следует напрямую из теории Эйнштейна: Вселенная либо расширяется, либо сжимается. Жорж Леметр — последователь Фридмана, который независимо от своего предшественника все это повторил. И Эдвин Хаббл, открывший, что Вселенная расширяется. Хаббл ошибся в семь раз, рассчитывая скорость расширения Вселенной, — ну там просто сработало несколько ошибок в одну сторону, и по Хабблу получалось, что возраст Вселенной — всего лишь два миллиарда лет. А уже тогда было ясно, что она старше. Противоречие это несколько затормозило процесс, и до 1960-х годов очень много людей — ученых в том числе — отвергали теорию расширяющейся Вселенной. А теологам, что характерно, она, наоборот, сразу понравилась, потому что это фактически вариант творения Вселенной.
С переменным успехом теория, которая в 1940-х получила название «теория Большого взрыва», просуществовала до конца 60-х годов. До этого Вселенная была вместилищем всего сущего, но после вмешательства Фридмана, Эйнштейна, Леметра и Хаббла она свой статус потеряла и превратилась в физический объект с разными характеристиками: размер, плотность, температура, свет. А как представить себе этот физический объект? И вот здесь многие ломаются. Потому что как это — представить замкнутую Вселенную? Я сейчас это объясню, и дальше слушать будет легче. Легко себе представить бесконечную Вселенную, правда? А как себе представить конечную Вселенную? Проще всего, наверное, представить себе шарик, на поверхности которого нарисованы галактики, звезды. Шарик можно надувать — тогда он будет расширяться, и нарисованные галактики будут друг от друга удаляться. Очень важно понимать, что у такого расширения нет центра. Почти всегда, представляя себе Большой взрыв, люди думают, что где-то что-то в какой-то точке взорвалось и расширяется в пустоту.Против теории Большого взрыва всегда протестовал Фред Хойл, талантливейший астрофизик, — ему не нравилась сама эта идея. Хотя термин «Большой взрыв» придумал именно он. Вообще говоря, «Большой взрыв» — это плохой перевод. Реально по-английски это звучит как «Big Bang», «большой бэмс», хлопок. Хойлу, как я уже сказал, хлопок этот не нравился. Он считал, что Вселенная бесконечна и вечна. Ну да, еще и расширяется, но расширение это компенсируется тем, что каждый год в одном кубическом километре из ничего рождается один протон и один электрон. Таким образом, плотность поддерживается постоянная. И эти новые частицы потом сгущаются в галактики… Но в действительности они не сгущаются, и это одна из проблем теории Фреда Хойла, которая на самом деле очень красивая: мы живем в вечной Вселенной, там решаются парадокс Ольберса и проблема тепловой смерти, жить в такой Вселенной прекрасно, но — она невозможна.
Они отлаживали антенну и никак не могли избавиться от какого-то постороннего шума. В конце концов канадский астроном Джим Пиблс, который в то время преподавал в Принстоне и сознательно искал реликтовое излучение, сказал им: «Ребята, вы — верите вы в это или нет — сделали великое открытие». Вскоре после этого Пензиас и Вилсон получили Нобелевскую премию. И вот тогда уже стало очень сложно противостоять концепции Большого взрыва. Но Фред Хойл продолжал сопротивляться. В конце жизни он заработал себе репутацию настоящего фрика, из-за чего во многом и не получил Нобелевскую премию, которую, безусловно, заслуживал.
До конца своих лет — а прожил он до 2002 года — он не признавал Большого взрыва. И все равно — великий ученый. Великие заблуждения иногда так же полезны для науки, как и великие открытия.Теория Большого взрыва устоялась — в нее поверили практически все вменяемые люди, кроме Фреда Хойла и еще нескольких человек. Когда я говорю «вменяемые люди», я имею в виду ученых — простой человек совершенно не обязан верить ни во что. Но остались вопросы. Например: почему Вселенная так велика и сбалансирована? Чуть-чуть что-то изменим в начальных условиях — все либо разлетелось мгновенно на космологические расстояния, либо схлопнулось. Очень точно надо было подстроить вот этот самый начальный толчок, чтобы Вселенная получилось такой большой с одной стороны и такой медленно разлетающейся с другой. Или вот еще вопрос: а почему Вселенная всюду примерно одинакова? Когда началось расширение — в начале Большого взрыва — разные области Вселенной ничего друг о друге не знали. Они просто не успели обменяться сигналами, потому что есть ограничение — скорость.
Давайте сначала разберемся с тем, какие были начальные условия. Мы не знаем. Теологи говорили: «Это как раз по нашей части: начальный толчок, да еще хорошо устроенный, — понятно, что это Творец». И так продолжалось до 1980-х годов, пока не началась Вторая космологическая революция. И вот ее герои.
Именно в такой последовательности — справа налево. Алексей Старобинский — живет в Москве, работает в Институте теоретической физики им. Ландау. Алан Гут — преподает в Принстоне. Вячеслав Муханов — окончил Физтех, писал диплом и защищался в ФИАНе, сейчас работает в Германии. Андрей Линде из ФИАНа — сейчас в Стэнфорде. Все четверо — будущие нобелевские лауреаты. Правда, к сожалению, их четверо, а надо троих… Но выделить кого-то одного тяжело — они все мудрецы. Что же такого они сделали? Так получилось, что они почти одновременно разработали теорию космологической инфляции, или инфляционную модель Вселенной. Я уже говорил: Вселенная — это поверхность шарика, только не двумерная, а трехмерная (точнее, даже четырехмерная, так как у нее есть время плюс три пространственные координаты). Когда-то Вселенная была очень маленькой. Какие силы на нее действовали? Или — можно на другой язык перевести — какие силы есть в вакууме? Почти никаких. А на поверхности шарика какие силы могут действовать? Сила поверхностного натяжения? А что будет, если мы подставим силу поверхностного натяжения в теорию гравитации Эйнштейна? На самом деле это очень просто показать, но надо писать простейшее дифференциальное уравнение, а я не буду это делать. Ответ такой: сила поверхностного натяжения будет не сжимать, а со страшной силой расталкивать шарик. Если она сильная, шарик будет раздуваться. «Раздувание» по-английски
Если Вселенная — это физический объект, то значит ли это, что она одна?
Но что было до инфляции? И это более сложный вопрос. Правильно будет сказать: до инфляции не было классического времени. Это так называемая Планковская эпоха, или Планковское состояние. У него есть определенная плотность энергии, и там вообще не работает теория Эйнштейна, там нет ни пространства, ни времени в нашем понимании. Там есть некие кванто-механические величины, которые мы пока не умеем описывать, потому что это чудовищно сложная теория; это то, что называется квантовой гравитацией, и это пока что больше заклинание, чем теория. Такой теории попросту еще нет — она не сформулирована. Поэтому на вопрос, что было до инфляции, мы ответа не имеем. У нас есть только соображения, мало чем подкрепленные.
Я назвал имена четырех будущих нобелевских лауреатов. А кто из них что сделал? Первый — Старобинский — написал очень хорошую модель. Он придумал, откуда берется тяжелый вакуум и что с ним дальше происходит. Он получил его естественным образом. Но он не понял, похоже, всех следствий своей модели — насколько она решает все космологические проблемы. Это понял Алан Гут (правда, не для модели Старобинского, а для своей собственной). Его модель, откровенно говоря, была плохой, неправильной, в ней были прямые ошибки. Но он написал настолько хорошую и хорошо аргументированную работу — объяснил, откуда что берется, как тяжелый вакуум решает все проблемы,— что его считают отцом теории инфляции. Даже когда стало понятно, что он ошибся, все равно осталось ощущение, что он самый главный. Андрей Линде выправил сценарий Гута и показал, как на самом деле все работает. А Слава Муханов сделал еще одну очень важную вещь, но о ней чуть позже.
Все ответы были даны. Все поверили, что инфляция и есть тот самый начальный толчок, который сделал все правильно, сбалансированно. Теперь понятно, почему Вселенная всюду одинаковая, однородная. Есть еще одна приятная вещь — здесь нет никакого нарушения сохранения энергии. Энергия рождается из чего-то очень-очень маленького, но это не страшно, потому что суммарная энергия Вселенной — с точки зрения стороннего наблюдателя, если бы такой существовал, — равна нулю. Вселенная дается даром. Теперь следующий вопрос. Хорошо, сработала инфляция, дала нам однородную Вселенную, но мы-то видим, что она неоднородная. Мы-то видим, что есть звезды, есть галактики, а в больших масштабах она похожа на какую-то сетку, где волокна, какие-то пустые места.
Мегапарсеки — сотни миллионов световых лет. Каждая точка здесь — это не галактики даже, а скопления галактик. Если мы видим структуры, если знаем, что они были во Вселенной изначально, значит, мы их должны видеть и в реликтовом излучении. Пензиас и Вилсон его зарегистрировали, и если мы будем очень хорошо его мерить, то должны будем заметить пятнистость излучения. А ее долго не видели. И даже начали изобретать всякие теории, чтобы как-то обойтись без этой пятнистости. В какой-то момент людям стало очень дискомфортно, потому что они не видели пятнистости на уровне десять в минус пятой, глядя в крупнейший в мире радиоантенный телескоп российского происхождения «РАТАН-600». И действительно, я помню это время, эти конференции, и тот же самый Линде говори: «Ребята, мы в тупике». Но в 1992-м все-таки увидели эту пятнистость. Американский спутник COBE и наш «Реликт» что-то увидели, но качество снимков было ужасное. Буквально было непонятно, на что смотрим, — реликт это или артефакты какие-то? Но разглядели! И теория выжила, и все вздохнули с облегчением. А откуда взялось это «десять в минус пятой»? Как раз Слава Муханов это и вычислил.
Все знают, что есть такая наука, как квантовая механика, которая не позволяет ничему находиться в покое. В том числе она не позволяет быть пространству строго однородным. Сейчас флуктуации кривизны пространства ничтожны, потому что кривизна очень маленькая и силы, в ней действующие, тоже маленькие. На стадии инфляции Вселенной все эти квантовые флуктуации давали неоднородности, одни из них растягивались, другие как бы рождались заново. Это был конвейер! Когда Вселенная перешла в горячую стадию, когда вакуум выгорел, эти флуктуации остались и продолжали жить, продолжали расширяться вместе с Вселенной и в конце концов начали расти. И вот они выросли в эту структуру. Все наши галактики, все эти гигантские скопления галактик получились в результате кванто-механических эффектов. Мы привыкли к тому, что квантовая физика — это что-то маленькое, почти микроскопическое. Так вот, эта микроскопическая теория дала гигантские неоднородности размером в сотни мегапарсеков. Да и нас самих бы не было без них. Люди какое-то время не могли в это поверить, но сейчас это уже общее место.
На новом витке Второй космологический революции — в 2002 и в 2009 годах — в космос запустили два очень хороших аппарата. Американский WMAP и европейский «Планк». Оба — микроволновые телескопы, которые очень хорошо измеряют реликтовое излучение. Вот картинка, полученная WMAP, и та же картинка того же участка неба от «Планка». Качество сильно отличается, хотя, забегая вперед, скажу, что все сливки снял WMAP («Планк» добавил мало нового).
Вот карта реликтового излучения: где желтая — там ярче, где синее — там холоднее. Контраст не очень: самое яркое от самого темного отличается всего на одну десятитысячную. Здесь также вычтены все фоны, вычтена так называемая дипольная компонента, которая связана с нашим движением в пространстве. То есть это вычищенная карта, а что мы на ней можем увидеть? Правильный ответ: ничего. Много людей пыталось здесь что-то разглядеть. Например, аномально холодное пятно. Или какие-то пальцы, похожие на листья. Роджер Пенроуз, замечательный ученый, который в старости начал заниматься экзотическими космологическими теориями, видел на картинке концентрические круги. Какие-то люди даже нашли здесь антисмайлик и лик Христа на Туринской плащанице. На самом деле здесь не видно ничего. Некоторые здесь видят что-то, но это так же, как мы и в облаках находим барашков всяких, крокодилов. Человеческий глаз может быстро выхватить что-то узнаваемое из совершенно хаотичной картинки. Более того, есть специальная теорема, подтвержденная измерениями, что на этой картинке в принципе ничего нельзя увидеть, потому что она гауссова. Такой математический термин, который на житейском языке означает, что перед нами нагромождение пятен разного размера, никак не коррелированных друг с другом.
Но что же тогда из этой картинки реально можно узнать? Оказывается, многое. И первым, кто нашел эффект, по которому это стало возможно, был Андрей Дмитриевич Сахаров.
Старинная его работа 1963 года — еще до открытия реликтового излучения — так называемые сахаровские акустические осцилляции. Возьмем график. С ним можно проделать операцию, называемую «разложение Фурье»: надеюсь, многим это словосочетание знакомо, в школе, по-моему, это еще не учат, но на первых курсах института точно проходят. «Разложение Фурье» записи звучащей струны будет выглядеть как бесконечно узкий пик. Если струна плохая — получится бугор. «Разложение Фурье» ноты, взятой певцом, — это более широкий бугор с широкими крыльями. Наша речь — это «разложение Фурье» в виде появляющихся и исчезающих бугров. Оно на этой картинке говорит об очень простой вещи. Мы видим колеблющуюся картинку. И все благодаря Андрею Дмитриевичу, который показал, что в горячей Вселенной начинают ходить звуковые волны (условно звуковые: понятно, что это не человеческий звук — другие частоты, другие длины, другие скорости). Потом звуковые волны вдруг потеряли скорость и вообще замерзли. И вот в тот момент, когда звуковые волны замерзли, — а это 380 тысяч лет от начала Вселенной, ее детство — Вселенная изменила состояние. Была горячей плазмой, а стала нейтральной. У нее резко упало давление, звуковые волны замерзли — только одни волны замерзли в максимуме своей амплитуды, другие в минимуме, и в зависимости от длины волны мы будем знать ее амплитуду. Вернемся к рисунку. Зеленым начерчена теоретическая кривая. В ней есть некоторые произвольные параметры, которые подогнаны под то, чтобы кривая совпадала с красными точками. И этих параметров шесть штук. Это на самом деле необыкновенно мало для такой кривой. Я не являюсь профессиональным космологом и всю жизнь занимался астрофизикой, но когда я впервые глянул на эту картинку, то испытал шок. Как можно все так хорошо описать? Конечно, для космологов, которые этим занимаются давно, ничего шокового тут нет — они к этому подходили постепенно, многие годы. Над теорией горячей Вселенной работали десятки человек, если не сотни. И если им это удается до сих пор, значит, теория и вправду хорошая. Значит, хорошо люди понимают, как расширялась Вселенная, что в ней происходило и как это потом транслировалось в реликтовое излучение, которое мы измеряем.
Есть довольно важные вещи в этой кривой еще. Например: насколько наша Вселенная плоская, евклидова? Насколько велик этот наш пузырь? Видим ли мы его кривизну? Не видим. Что это значит? Что Вселенная, по крайней мере, в сто раз больше, чем участок, который мы видим. Инфляция очень быстро раздувает Вселенную до гигантских размеров. И мы сидим на микроскопическом кусочке — одной миллиардной, может быть, от всего размера Вселенной.
Теперь пару слов вообще об истории и о будущем Вселенной. На слайде вы видите всю историю Вселенной после начала Большого взрыва, то есть инфляцию я оставил за началом координат. Далее Вселенная расширялась по степенному закону. Потом ничего не происходило во Вселенной — и это называется «великая энергетическая пустыня». Очень вероятно, что что-то там все-таки происходило, но мы ничего про это не знаем, и пока что все эксперименты на ускорителях не дали нам никаких оснований думать об обратном. Дальше во Вселенной произошел фазовый переход, появилось знаменитое поле Хиггса, и физика Вселенной стала гораздо более сложной и разнообразной. Дальше произошел так называемый confinement — до этого летали кварки и глюоны сами по себе, а здесь они объединились в капельки, которые мы теперь называем протонами и нейтронами. Дальше образовались ядра дейтерия, гелия (первичный нуклеосинтез), далее началась эпоха рекомбинации, и это именно тот промежуток времени, который мы видим в телескоп. Время существования Вселенной, в которой возможна жизнь, то есть последние миллиарды лет, — это узенькая линия. Вот так она развивалась, и нигде, кроме нынешнего времени, во Вселенной не было возможности, чтобы образовались какие-то сложные структуры, — просто не хватало времени. Какую физику ни придумывай, все было безвидно, как говорится в Библии.
А что со Вселенной будет дальше? Сейчас во Вселенной опять идет инфляция — только другая инфляция, гораздо более медленная: пространство раздувается по экспоненте (точнее говоря, примерно по экспоненте — мы не знаем точно). И вся ее дальнейшая история зависит от того, что ее раздувает. Если это тяжелый вакуум, то Вселенная так и будет расширяться — в два раза за каждые десять миллиардов лет примерно. Что это значит для нас? Не для нас даже, а для жизни, которая продолжит нашу жизнь. Останутся в целости и сохранности Галактика и все скопления галактик. Но погаснут звезды типа Солнца. Еще 100 миллиардов лет будут светить красные карлики — и где-то возле них будет возможна жизнь, но потом вероятны всякие столкновения, после чего произойдет ренессанс, появятся новые выводки звезд, вокруг которых, в принципе, возможна жизнь. И люди той поры будут видеть хотя и порядком потускневшую Галактику, но все же массу звезд над головой и через сотни миллиардов лет.
Есть и более катастрофический сценарий. Если темная энергия, расширяющая Вселенную, окажется так называемой фантомной материей, у которой очень большое отрицательное давление, то Вселенную просто разорвет. Причем произойдет это очень быстро — за конечное время. Если темная энергия — физическое поле, которое заполняет все пространство, оно будет потихоньку уменьшаться, а Вселенная будет потихоньку расширяться. А потом — раз! — и это поле выгорит. И тогда во Вселенной образуется совсем новая физика с абсолютно новыми масштабами. Та Вселенная будет очень холодной, очень большой, и в ней будет все очень медленно двигаться и жить. Если там образуется — а почему нет? — какая-то новая жизнь, то она будет воспринимать этот фазовый переход как свой собственный Большой взрыв. А наши небесные тела будут ей казаться какими-то ужасными реликтами эпохи ранней Вселенной, от которых лучше держаться подальше.
Если темная энергия, расширяющая Вселенную, окажется так называемой фантомной материей, у которой очень большое отрицательное давление, то Вселенную просто разорвет.
Собственно, основная часть моего доклада подошла к концу. Остался лишь один вопрос: если Вселенная — это физический объект, то значит ли это, что она одна? Да нет, конечно. Сама постановка вопроса говорит, что замкнутых трехмерных шариков, из которых нельзя выпрыгнуть, может быть очень много. Есть одно наводящее соображение, говорящее в пользу этой теории: наша Вселенная удивительно хорошо подогнана под существование человека. Это так называемый антропный принцип — косвенное свидетельство того, что вселенных, скорее всего, много и они разные. Возвращаясь к теории инфляции: возникает вопрос — а откуда взялось множество вселенных? Оказывается, инфляция не может закончиться образованием одной Вселенной. Квантово-механический эффект. Поле не может сразу все уменьшиться и выгореть — где-то обязательно останутся кусочки. Зрительно это можно себе представить как бесконечно, безудержно пузырящуюся пену, где каждый пузырь — новая Вселенная. Вселенные могут быть связаны друг с другом так называемыми кротовыми норами, перемычками, которые могут испаряться, а могут и оставаться. Некоторые черные дыры могут быть кротовыми норами, ведущими в другую Вселенную, но в пределах нашего горизонта нет, скорее всего, ни одной. А почему вселенные разные? А вот здесь твердого ответа нет. Зато есть теория струн, на которую люди возлагают очень много надежд. Она сама по себе очень интересная, но вдаваться в нее я не буду, потому что в этом случае и вы переутомитесь, и я перегреюсь. Скажу одно: теория струн в принципе позволяет перестраивать вакуум. Вот я задавал вначале вопрос: Вселенная четырехмерная или одиннадцатимерная? И многие ответили, что одиннадцатимерная. Теория струн требует именно этого параметра от Вселенной. Все измерения скрутились в тоненькие трубочки, они могли это сделать огромным количеством способов, и каждый такой способ дает разную физику и разные Вселенные, в одну из которых мы с вами попали. В чем проблема теории струн? Она не может делать значимых предсказаний — невозможно указать, в каком из вакуумов мы сидим. Был огромный энтузиазм в 1980-х годах, что вот-вот мы определим массу электрона, массу кварка и все остальное. А оказалось, что все эти состояния зависят от вакуумов. И теория струн пока что зависла в состоянии, когда ее невозможно ни подтвердить, ни опровергнуть. Останется ли она абстракцией или объяснит мир — этого никто не знает.
Я рассказывал о том, что мы знаем. Картина вообще полная и логически связная, но на ней все равно остаются дыры. Мы не знаем сущности, которая ввела инфляцию, не знаем, почему вакуум тяжелый. Кто-то скажет, что в таком случае я мог бы и не умничать тут так. Но поверьте: если я буду попроще рассказывать, получится попса, и у людей возникнет ложная иллюзия понимания. Допустим, показывает Discovery фильм: вот был во Вселенной звук, а теперь смотрите, какая красивая картинка, — люди посмотрели, и никто ничего не понял. Как я объясняю, тоже, наверное, не всем понятно, но кто-то в этом зале что-то все-таки понял. Я объясню, почему не могу рассказывать проще: вся красота, вся эта удивительность просто пролетели бы мимо.
В принципе, я закончил. Теперь небольшое отступление. Я написал книжку, где излагается все, что я только что наговорил. Но не только это. Есть в ней история про фантастических существ, которые якобы живут под толстым слоем льда примерно на спутнике Юпитера Европе и вообще ничего не видят дальше ста метров. В книжке рассказывается, как постепенно до них доходит, что над ними слой твердой материи, как они совершают кругосветное путешествие и думают, что заблудились, как изобретают гироскоп и определяют, что их мир вращается вокруг тяжелого гравитационного центра. В конце для оптимизма они у меня там высверливают дырку во льду и видят все собственными глазами. В действительности аналогия очень глубокая. Мы сейчас на стадии, когда уперлись взглядом в экран — а именно в область реликтового излучения — и дальше просветить пространство не умеем. Мы на стадии, на которой находились придуманные мной существа, двигаясь под многометровым наростом льда. Но пробурили же они лед. Будет ли у нас когда-нибудь такой прорыв? А почему нет. Только дырка, которую нам когда-нибудь предстоит пробурить, скорее всего, будет не вовне, а куда-то вглубь, во внутреннее пространство. То есть прозрение будет, скорее, теоретическое, чем практическое. И на этой оптимистической ноте я бы хотел откланяться.
Записала Наталья Кострова
Понравился материал? Помоги сайту!
Тест
Ангелы и призраки «Другого пространства»
Знаете ли вы героев главного российского фестиваля новой музыки?
новости
11 марта 2022
14:52COLTA.RU заблокирована в России
3 марта 2022
17:48«Дождь» временно прекращает вещание
17:18Союз журналистов Карелии пожаловался на Роскомнадзор в Генпрокуратуру
16:32Сергей Абашин вышел из Ассоциации этнологов и антропологов России
15:36Генпрокуратура назвала экстремизмом участие в антивоенных митингах
Все новости
Новое в разделе «Colta Specials»Самое читаемое
От редакции COLTA. RU
94717
Культура во время «военных операций»
85496
Полифонические свидетели конца и начала. Эссе Ганны Комар
44779
Отделения
9825
Приход отца Александра Меня и позднесоветская интеллигенция
24087
Письмо папе
8172
Оливия Плендер. «История Королевства зверей»
13700
Что можно увидеть на выставке «Теле-трамплин»?
10788
Как эпоха застоя стала «золотым веком» детского телевидения в СССР
7898
Как Чебурашка за море ходил, или Кое-что о шведской детской культуре 70-х
16306
Лермонтов. Урановый след
12341
Теле-трамплин: от детского телевидения к современному искусству и литературе
7806
Сегодня на сайте
Colta SpecialsОт редакции COLTA.RU
Обращение к читателям
5 марта 202294717
Colta SpecialsКультура во время «военных операций»
Нужны ли сейчас стихи, выставки и концерты? Блиц-опрос COLTA.RU
3 марта 202285496
ОбществоПочему вина обездвиживает, и что должно прийти ей на смену?
Философ Мария Бикбулатова о том, что делать с чувствами, охватившими многих на фоне военных событий, — и как перейти от эмоций к рациональному действию
1 марта 202273158
ОбществоРодина как утрата
Глеб Напреенко о том, на какой внутренней территории он может обнаружить себя в эти дни — по отношению к чувству Родины
1 марта 202252305
ЛитератураOften you write das Leid but read das Lied
Англо-немецкий и русско-украинский поэтический диалог Евгения Осташевского и Евгении Белорусец
1 марта 202250382
ОбществоПисьмо из России
Надя Плунгян пишет из России в Россию
1 марта 202263242
Colta SpecialsПолифонические свидетели конца и начала. Эссе Ганны Комар
В эти дни Кольта продолжает проект, посвященный будущему Беларуси
1 марта 202244779
ТеатрСлучайность и неотвратимость
Зара Абдуллаева о «Русской смерти» Дмитрия Волкострелова в ЦИМе
22 февраля 202237577
Литература«Меня интересуют второстепенные женские персонажи в прозе, написанной мужчиной»
Милена Славицка: большое интервью
22 февраля 202237507
ОбществоАрхитектурная история американской полиции
Глава из новой книги Виктора Вахштайна «Воображая город. Введение в теорию концептуализации»
22 февраля 202236930
ОбществоВиктор Вахштайн: «Кто не хотел быть клоуном у урбанистов, становился урбанистом при клоунах»
Разговор Дениса Куренова о новой книге «Воображая город», о блеске и нищете урбанистики, о том, что смогла (или не смогла) изменить в идеях о городе пандемия, — и о том, почему Юго-Запад Москвы выигрывает по очкам у Юго-Востока
22 февраля 202246765
ИскусствоДва мела на голубой бумаге
Что и как смотреть на выставке французского рисунка в фонде In Artibus
21 февраля 202240791
А было ли что-нибудь до Большого Взрыва?
У всего, что нас окружает, есть прошлое: у человечества, у растительного и животного мира, у атмосферы и океанов, у суши и у самой планеты Земля. Солнце немного старше Земли, а Галактика значительно старше Солнца. Значит, и у Земли, и у Солнца есть своё прошлое. Есть оно и у Галактики, которая появилась примерно 10—12 миллиардов лет назад. Казалось бы, всё просто и ясно, но если копнуть глубже, то простое и ясное сменяется непонятным, загадочным, таинственным…
Одна из соседок нашей Галактики — Большая туманность Ориона. Фото НАСА.
Открыть в полном размере
‹
›
Узнав о Большом взрыве, люди задумались: а что было до него? На первый взгляд это простой вопрос, который может возникнуть у каждого. Но в действительности это, пожалуй, самый трудный вопрос и ответить на него однозначно пока не смог никто. Такое положение, конечно, не устраивало учёных, ведь они привыкли рано или поздно находить ответы на самые разные, в том числе очень сложные вопросы. Взявшись за раскрытие главной тайны Вселенной — что было до Большого взрыва? — исследователи получили не один, а довольно много ответов, весьма странных и непонятных простым людям.
Главный из ответов сводился к тому, что до Большого взрыва не было вообще ничего. Получается, что Вселенная произошла из Ничего, что Ничто породило Всё! Невозможно себе даже представить, когда и почему такое могло произойти. Любой скажет, что из Ничего нельзя не только создать Вселенную, но и смастерить табуретку. Однако учёные настаивают на своём. Они, и в их числе знаменитый физик-теоретик из Англии Стивен Хокинг, говорят, что не просто придумали, будто Вселенная получилась из Ничего, а пришли к такому выводу в результате строгих математических расчётов, в которых пока никто не обнаружил ошибку. Когда-нибудь, считают они, им удастся узнать, что такое Ничто.
Возможно, Ничто — это отсутствие не только каких-нибудь небесных тел, атомов, любых элементарных частиц, но и самого пространства и времени. Возможно также, что в таинственном Ничто отсутствовали привычные нам формы вещества. Но это была не совсем пустота, и там происходили какие-то процессы, в результате которых могли возникать маленькие взрывы и в конце концов случился Большой взрыв. Чтобы найти подтверждение своей гипотезе, исследователи пытаются создать что-то похожее на Ничто. Они построили специальные камеры, из которых удалили частицы вещества, и понизили температуру, почти достигнув холода космического пространства. Оказалось, что получившееся Ничто на самом деле представляет собой Что-то и его можно исследовать различными способами.
И всё-таки очень многие не согласны с тем, что Вселенная произошла из Ничего. Противники этой гипотезы отвечают на вопрос, что было до Большого взрыва, по-разному. Главная идея сводится к тому, что Большой взрыв — выдающееся событие в истории Вселенной, но Вселенная существовала и до него. Пока мало что можно сказать о том, каким был этот «предок» нашей Вселенной, но можно предположить, что в его истории произошло нечто такое, что привело к Большому взрыву, породившему нашу Вселенную.
Есть, конечно, и другие мнения. Может быть, до Большого взрыва существовала Вселенная, похожая на нашу, а может быть, совсем не похожая. Можно предположить также, что до нашей Вселенной были хотя бы две другие вселенные, столкновение которых привело к Большому взрыву.
По мнению некоторых исследователей, Вселенная существует вечно и в её истории Большие взрывы сменяются Большими хлопками. Такие хлопки могли бы происходить, если бы расширение Вселенной сменялось сжатием. Наконец, можно предположить, и с этим соглашаются многие, что в начальный момент истории нашей Вселенной произошло поистине невероятное событие: новорождённая Вселенная стала стремительно разбухать и раздулась до огромных размеров, порождая «пузырьки», из которых одна за другой выросли разные вселенные. Так возникла Большая Вселенная, которую иначе называют Мегавселенной или Мультивселенной. Если это верно, то подобно тому, как наша Галактика — одна из миллиардов известных нам сегодня галактик, так и наша Вселенная — одна из множества совершенно не известных нам других вселенных.
Давайте пофантазируем и представим себе, что другие вселенные — такие же, как наша, или похожи на неё, то есть состоят из множества галактик, звёзд и планет. Планет так много, что наверняка на некоторых из них существует разумная жизнь. Их обитатели достигли очень высокого уровня развития и стали властителями своей галактики. Конечно, они научились летать со своих планет к далёким звёздам, вокруг которых движутся планеты, подобно тому как наша планета движется вокруг Солнца. Постепенно они освоили много планетных систем в своей галактике, встречаясь при этом, конечно, с местными инопланетянами.
Всё может быть и совершенно иначе, если в Большой Вселенной существуют вселенные, во всём не похожие на нашу. Даже фантастам трудно представить себе, что творится в этих вселенных, а если в них есть жизнь, то какова она, на что похожа и на какие чудеса способны её обитатели.
В невероятное верится с трудом или вообще не верится. Но разве легко было науке убедить людей в том, что, например, Земля — шар? Когда-то тех, кто говорил такое, считали глупцами, потому что только глупцы могли думать, что Земля не плоская. Все были уверены, что на шаре жить невозможно, потому что живущим «внизу» пришлось бы ходить вниз головой. Невозможно было поверить и в то, что Земля вращается вокруг Солнца. Ведь мы каждый день видим, как Солнце восходит, поднимается над горизонтом, а потом заходит. Создаётся полное впечатление, что Солнце движется вокруг Земли. Но сегодня каждый знает, что всё происходит наоборот: не Солнце движется вокруг Земли, а Земля вокруг Солнца. А потом выяснилось, что Солнце мчится вокруг центра нашей Галактики, а сама Галактика, как и множество других, тоже не стоит на месте, а мчится в беспредельно расширяющейся и разлетающейся во все стороны Вселенной.
Интересно, что через несколько десятков лет будут думать люди о том, что было до Большого взрыва?
Из книги «Самый-самый Большой взрыв».
КАК ЗАРОЖДАЛАСЬ СОЛНЕЧНАЯ СИСТЕМА | Наука и жизнь
Наука и жизнь // Иллюстрации
По одной из гипотез, выдвинутых астрономами, Солнце и планеты возникли из раскалённого вращающегося облака.
‹
›
Открыть в полном размере
Вселенная не так уж охотно раскрывает свои тайны. Учёные упорно стараются отгадать загадки, которые она им задаёт, придумывают разные ответы, выдвигают, обсуждают и проверяют всевозможные научные предположения (их обычно называют гипотезами). Немало среди них гипотез, объясняющих, как возникли звёзды и планеты.
Звёзды, как и люди, рождаются, живут и в конце концов умирают. Длится жизнь большинства звёзд миллиарды лет и завершается иногда мощными вспышками. Мы говорим «вспыхнула сверхновая звезда», но помним, что в действительности видим космический фейерверк, которым отмечен конец жизни какого-то огромного и далёкого от нас светила. Получается, что во Вселенной вообще нет однажды появившихся и затем никогда не меняющихся небесных тел.
С помощью новейших наземных и космических телескопов можно наблюдать и тщательно исследовать свойства множества звёзд, находить звёзды, похожие друг на друга и совсем разные, необычные. Такой работе посвятили свою жизнь многие астрономы, благодаря которым мы сегодня знаем, что среди звёзд есть гиганты и карлики, холодные и горячие, очень тяжёлые и такие же по массе, как наше Солнце.
А ещё астрономы выяснили, что различен и возраст звёзд. Юные звёзды живут, например, в красивом звёздном скоплении Плеяды. Им не более нескольких миллионов лет. Такой возраст в звёздном мире считается детским. А вот нашему Солнцу не менее пяти миллиардов лет. Правда, есть звёзды более почтенного возраста. Долгожителей особенно много в шаровых звёздных скоплениях — большущих звёздных клубках, в которых миллионы и даже миллиарды звёзд.
Астрономам, научившимся различать звёзды по внешнему виду и возрасту, стало легче разбираться в том, как протекает жизнь звёзд от рождения до смерти. Но, поскольку, в отличие от нас, людей, чья жизнь длится всего несколько десятилетий, звёзды живут миллионы и миллиарды лет, учёные могут лишь вообразить себе жизненный путь звёзд, придумать и обосновать ту или иную гипотезу об их происхождении и развитии.
Звёзды, по мнению большинства астрономов, возникли (и продолжают рождаться сейчас в нашей и других галактиках) из сжимающихся облаков газа и пыли. Сначала образуются не настоящие звёзды, а их зародыши — «протозвёзды», похожие на шаровые облака газа. Газовый шар может превратиться в настоящую звезду тогда, когда внутри него заработает «звёздный» источник энергии. Такой «костёр» начинает гореть не сразу. Нужно, чтобы внутри сжимающейся «протозвезды» температура повысилась хотя бы до десяти миллионов градусов. Тогда зародыш превратится в настоящую звезду, которая будет долгое время светить благодаря заработавшему в её центре надёжному источнику энергии.
Самое интересное, что внутри Солнца такая высокая температура существует уже несколько миллиардов лет и будет существовать ещё по крайней мере столько же. Но чтобы костёр не погас, нужно всё время подбрасывать в него дрова. Каким же образом поддерживается такая немыслимая жара внутри Солнца? Это очень сложный и важный вопрос, над которым долго размышляли многие астрономы и физики. Сейчас почти все они не сомневаются в том, что внутри Солнца водород превращается в гелий. Попытайтесь вообразить себе множество лёгких частиц водорода, которые при температуре в миллионы градусов стремятся объединиться в более тяжёлые частицы гелия. Это и происходит внутри Солнца. И пока такой «костёр» там пылает, Солнце будет посылать свет и тепло каждому из нас и всему живому на планете Земля.
Нашему Солнцу водородного горючего хватит ещё примерно на десять миллиардов лет. А что будет потом? Потом горючим станет гелий, который превратится в ещё более тяжёлый, чем он сам, углерод. Вид Солнца изменится. Оно станет красным гигантом, через некоторое время внешняя оболочка отделится от Солнца и постепенно рассеется, а на месте красного гиганта окажется белый карлик — очень плотная и горячая звёздочка размером с нашу Землю…
Если же звезда тяжелее Солнца, то в конце жизни она станет не белым карликом, а совсем крохотной и очень плотной нейтронной звездой или вообще превратится в загадочную невидимку — «чёрную дыру».
Как-то незаметно из далёкого прошлого мы перенеслись в далёкое будущее. Но о многих событиях, которые произошли в прошлом, в частности о том, как зарождались планеты, в том числе и наша Земля, пока ещё ничего не сказали.
Мы живём сейчас в очень стройной, красивой и гармоничной Солнечной системе. Напомним, что Солнце — одна из тысячи миллиардов звёзд нашей Галактики, которая называется Млечный Путь (см. «Наука и жизнь» № 2, 2008 г.). Миллиарды лет планеты движутся вокруг Солнца в одном и том же направлении, строго соблюдая правила небесного движения. В этом же направлении вращаются вокруг своих осей почти все планеты и спутники вокруг планет. Замечательный порядок! Временами, правда, он вроде бы нарушается приближающимися к Солнцу кометами, но эти «косматые звёзды», обогнув Солнце, снова уносятся к окраинам Солнечной системы. Так было, так есть и так будет ещё очень-очень долго…
А с чего начинался этот небесный хоровод? Как, например, возникли планеты? Дать точный ответ на этот вопрос долгое время никто не мог. Даже сегодня астрономы считают, что им пока не удалось окончательно разобраться в том, как возникла Солнечная система, хотя над этим вопросом размышляли многие учёные, в том числе и жившие задолго до нас.
Одни считали, что планеты стали зарождаться в результате космической катастрофы, когда с Солнцем столкнулась огромная комета или вблизи него пролетела какая-то большущая звезда. Вот тогда-то часть раскалённого солнечного вещества отделилась от нашего светила и из него образовались сгустки, которые постепенно превратились сначала в горячие, а затем в холодные шары, ставшие планетами. Как будто всё ясно и понятно, но в науке мало что-нибудь сказать. Надо подтвердить свои доводы математическими расчётами и, конечно, сравнить предложенную гипотезу с тем, что нам уже известно о планетах. Вот тут-то и оказывается, что правдивая на первый взгляд гипотеза на самом деле не так уж хороша.
Долгое время вполне подходящей казалась гипотеза о том, что Солнце и планеты возникли из одного и того же вращающегося раскалённого облака газа. Силы тяготения, с которыми мы и сейчас встречаемся на каждом шагу и которые удерживают планеты на их орбитах, сжимали газовое облако, постепенно оно превратилось в Солнце, а часть вещества, отделившись от облака, создала вокруг него несколько колец. Со временем из этих колец образовались планеты.
Ещё по одной гипотезе, планеты, скорее всего, вообще никогда не были раскалёнными шарами. Похоже, что они возникли из окружающей Солнце туманности, состоящей из газа и пыли. Туманность, медленно вращаясь вокруг Солнца, постепенно сплющивалась в газово-пылевой диск, который со временем распался на отдельные части. Некоторые из этих сгущений выросли до размеров планет. Наша Земля, например, образовалась из своего «зародыша» примерно за сто миллионов лет. Падавшие на неё в то время огромные метеориты разогревали недра и оставляли на поверхности многочисленные кратеры. Появившиеся затем воздух и вода стёрли с поверхности Земли большинство кратеров, а на поверхности других небесных тел, где эти жизненно необходимые компоненты так и не возникли, например на Меркурии или Марсе, они остались неприкосновенными.
Подсчитано, что масса всех планет Солнечной системы составляет лишь 0,1% массы Солнца. Но более подробно мы поговорим о них в следующий раз.
Узнаем ли мы когда-нибудь как появилась Вселенная?
Считается, что наша Вселенная родилась 13,8 миллиардов лет назад после Большого взрыва и с тех пор расширяется с ускорением. Однако что именно происходило в первые секунды после рождения Вселенной – инфляции – долгое время остается для физиков загадкой. Согласно новой гипотезе, о чем рассказывает Live Science, в относительно молодой Вселенной «наблюдатель должен быть огражден» от непосредственного наблюдения мельчайших структур в космосе. Другими словами, физики по определению никогда не смогут построить модель инфляции с помощью обычных инструментов, и им придется придумать лучший способ. Новая гипотеза указывает на определенную особенность инфляционных моделей, которые принимают очень, очень малые флуктуации в пространстве-времени и делают их больше. Но так как полной физической теории этих малых флуктуаций не существует, модели инфляции с этой особенностью (то есть практически все), никогда не будут работать. Напомню, что наблюдения за крупномасштабной структурой Вселенной и остатками света от Большого взрыва ранее показали, что в очень ранней Вселенной наш космос, вероятно, переживал период невероятно быстрого расширения.
Наши знания о Вселенной увы, недостаточны, чтобы понять, что происходило в первые доли секунды после ее рождения.
Эволюция ранней Вселенной
Сегодня мы знаем, что в результате инфляции за мельчайшую долю секунды Вселенная стала в триллионы и триллионы раз больше. В процессе этого роста инфляция также сделала наш космос немного неровным: по мере ее развития мельчайшие случайные квантовые флуктуации — флуктуации, встроенные в саму ткань пространства-времени — становились намного, намного больше, что означало, что некоторые области были более плотно упакованы материей, чем другие.
В конце концов, эти субмикроскопические различия стали макроскопическими … и даже больше, в некоторых случаях простираясь от одного конца Вселенной до другого. Миллионы и миллиарды лет спустя эти крошечные различия в плотности выросли, чтобы стать семенами звезд, галактик и самых больших структур в космосе. Но если инфляция ранней Вселенной сделала нашу Вселенной такой, какой мы знаем ее сегодня, то что именно привело инфляцию в действие? Как долго она продолжалась и что остановило ее? Ответов на эти вопросы у ученых, увы, нет – им попросту не хватает полного физического описания этого знаменательного события.
Инфляционная модель Вселенной выглядит так.
Еще одна загадка заключается в том, что в большинстве моделей инфляции флуктуации в чрезвычайно малых масштабах раздуваются, превращаясь в макроскопические различия. Эти различия невероятно крошечные и чтобы описать с их помощью реальность, потребуется новая теория физики. Такая, кстати, уже маячит на горизонте, о чем подробнее я рассказывала в этой статье.
Разные подходы к пониманию инфляции
Поскольку у ученых нет теории, которая объединяла бы физику при высоких энергиях и малых масштабах (например, при таких условиях, как инфляция), физики пытаются построить версии с более низкими энергиями, чтобы добиться прогресса. «В рамках новой гипотезы, однако, такая стратегия не работает, потому что когда мы используем ее для построения моделей инфляции, процесс инфляции происходит так быстро, что «подвергает» субпланковский режим макроскопическому наблюдению», – пишут авторы нового исследования.
Еще один возможный подход к моделированию ранней Вселенной кроется в теории струн, которая сама по себе является обнадеживающим кандидатом на создание единой теории всего (объединяя классическую и квантовую физику). Интересно, что в этой модели Вселенная не подвергается периоду быстрой инфляции. Вместо этого период инфляции проходит гораздо мягче и медленнее, а флуктуации не «подвергаются» воздействию макроскопической Вселенной. Однако так называемые «струнные газовые модели» (от англ. «effective field theory») пока не обладают достаточной детализацией, чтобы их можно было проверить на основе наблюдаемых свидетельств инфляции во Вселенной.
Наблюдаемая Вселенная скрывает в себе множество тайн.
Читайте также: Действительно ли мир стоит на пороге открытия «новой физики»?
Напомню, что теория струн предсказывает огромное количество потенциальных вселенных, из которых наш конкретный космос (с его набором сил и частиц и остальной физикой) представляет только одну. И все же большинство моделей инфляции (если не все) несовместимы с теорией струн на базовом уровне. Вместо этого они принадлежат к тому, что физики называют «болотом» — области возможных вселенных, которые просто физически не могут существовать.
Сегодня ученые не теряют надежд построить традиционную модель инфляции, но если новая гипотеза верна, это сильно ограничит типы моделей, которые физики могут построить. Также важно понимать, что новая гипотеза пока что является не более чем предположением. Которое, правда, согласуется с недоказанной теорией струн (на самом деле теория струн далека от завершения и пока что не способна делать предсказания).
Теория струн призвана объединить все наши знания о Вселеной и объяснить ее.
Вам будет интересно: Обнаружено новое доказательство теории струн
Но подобные идеи, все же полезны, потому что физики принципиально не понимают процесс инфляции. Так что все, что может помочь исследователям отточить навыки мышления, в том числе нестандартного, приветствуется. А как вы думаете, сумеют ли физики в ближайшие годы понять как родилась Вселенная? Ответ будем ждать здесь, а также в комментариях в этой статье.
ВселеннаяЗагадки космосаКосмос
Для отправки комментария вы должны или
Большой взрыв: что на самом деле произошло при рождении нашей Вселенной?
(Изображение предоставлено: MARK GARLICK / SCIENCE PHOTO LIBRARY через Getty Images)Потребовалось чуть больше семи дней, чтобы создать вселенную такой, какой мы ее знаем сегодня. SPACE.com рассматривает тайны небес в нашей серии из восьми частей: История и будущее космоса . Это 5 часть из этой серии.
Наша Вселенная родилась около 13,7 миллиардов лет назад в результате массивного расширения, которое взорвало пространство, как гигантский воздушный шар.
Вкратце это и есть теория Большого Взрыва, которую поддерживают практически все космологи и физики-теоретики. Доказательства, подтверждающие эту идею, обширны и убедительны. Мы знаем, например, что Вселенная продолжает расширяться даже сейчас с постоянно ускоряющейся скоростью.
Ученые также обнаружили предсказанный тепловой отпечаток Большого взрыва, пронизывающее вселенную космическое микроволновое фоновое излучение. И мы не видим никаких объектов явно старше 13,7 миллиардов лет, что позволяет предположить, что наша Вселенная возникла примерно в это время.
«Все эти вещи ставят теорию Большого взрыва на чрезвычайно прочную основу», — сказал астрофизик Алекс Филиппенко из Калифорнийского университета в Беркли. «Большой взрыв — чрезвычайно успешная теория».
Чему учит нас эта теория? Что на самом деле произошло при рождении нашей Вселенной и как она приняла форму, которую мы наблюдаем сегодня?
Связанный: История Вселенной: от Большого взрыва до наших дней за 10 простых шагов
Начало
Традиционная теория Большого взрыва утверждает, что наша Вселенная началась с сингулярности — точки бесконечной плотности и температуры, природа которой сложна для нашего разума, чтобы понять. Однако это может не совсем точно отражать реальность, говорят исследователи, потому что идея сингулярности основана на общей теории относительности Эйнштейна.
«Проблема в том, что нет никаких оснований верить в общую теорию относительности в этом режиме», — сказал Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Это будет неправильно, потому что не принимает во внимание квантовую механику. А квантовая механика, безусловно, будет важна, как только вы доберетесь до этого места в истории Вселенной».
Итак, самое начало вселенной остается довольно туманным. Ученые считают, что они могут воспроизвести историю примерно через 10 с минус 36 секунд — одну триллионную от триллионной триллионной доли секунды — после Большого взрыва.
В этот момент, по их мнению, Вселенная претерпела чрезвычайно короткий и драматический период расширения, расширяясь быстрее скорости света. Он удвоился в размере, возможно, в 100 или более раз, и все это в течение нескольких крошечных долей секунды.
(Может показаться, что инфляция нарушает специальную теорию относительности, но это не так, говорят ученые. Специальная теория относительности утверждает, что никакая информация или материя не могут переноситься между двумя точками в пространстве со скоростью, превышающей скорость света. Но инфляция была расширение самого пространства.)
«Инфляция была «взрывом» Большого Взрыва, — сказал Филиппенко SPACE.com. — До инфляции было немного вещества, которое, вполне возможно, немного расширилось. Нам нужно было что-то вроде инфляции, чтобы сделать Вселенная большая».
Эта быстро расширяющаяся вселенная практически не содержала материи, но, согласно теории, содержала огромное количество темной энергии. Темная энергия — это таинственная сила, которая, по мнению ученых, является движущей силой нынешнего ускоряющегося расширения Вселенной.
Во время инфляции темная энергия заставила Вселенную сгладиться и ускориться. Но это не задержалось надолго.
«Это была просто временная темная энергия», — сказал Кэрролл SPACE.com. «Он превратился в обычную материю и излучение посредством процесса, называемого повторным нагревом. Вселенная превратилась из холодной во время инфляции в горячую снова, когда вся темная энергия исчезла».
Ученые не знают, что могло вызвать инфляцию. По словам Филиппенко, это остается одним из ключевых вопросов космологии Большого взрыва.
На этом рисунке показана временная шкала Вселенной, основанная на теории Большого взрыва и моделях инфляции. (Изображение предоставлено NASA/WMAP)Большой отскок
Большинство космологов считают инфляцию ведущей теорией для объяснения характеристик Вселенной — в частности, того, почему она относительно плоская и однородная, с примерно одинаковым количеством вещества, равномерно распределенным во всех направлениях.
Различные доказательства указывают на то, что инфляция является реальностью, сказал физик-теоретик Энди Альбрехт из Калифорнийского университета в Дэвисе.
«Все они прекрасно сочетаются с инфляционной картиной», — сказал Альбрехт, один из создателей теории инфляции. «Инфляция сделала невероятно хорошо».
Однако инфляция — не единственная идея, пытающаяся объяснить структуру Вселенной. Теоретики придумали другую, названную циклической моделью, которая основана на более ранней концепции, называемой экпиротической вселенной.
Эта идея утверждает, что наша Вселенная не возникла из одной точки или чего-то подобного. Скорее, она отскочила в сторону расширения — гораздо более спокойными темпами, чем предсказывает теория инфляции — из ранее существовавшей Вселенной, которая сжималась. Если эта теория верна, наша Вселенная, вероятно, претерпела бесконечную череду взрывов и схлопываний.
«Начало нашей вселенной было бы прекрасным и конечным», — сказал Берт Оврут из Пенсильванского университета, один из создателей экпиротической теории.
Циклическая модель утверждает, что наша Вселенная состоит из 11 измерений, только четыре из которых мы можем наблюдать (три пространственных и одно временное). Наша четырехмерная часть Вселенной называется браной (сокращение от мембраны).
Согласно идее, в 11-мерном пространстве могут скрываться и другие браны. Столкновение двух бран могло привести к тому, что Вселенная перешла от сжатия к расширению, спровоцировав Большой взрыв, свидетельство которого мы наблюдаем сегодня.
На этом изображении всего неба космического микроволнового фона, созданном спутником «Планк» Европейского космического агентства, видны отголоски Большого взрыва, оставшиеся со времен зарождения Вселенной. (Изображение предоставлено ESA/LFI & HFI Consortia)Известная нам Вселенная обретает форму
Но, во-первых, как наша Вселенная возникла из ничего? Космологи подозревают, что четыре силы, управляющие Вселенной — гравитация, электромагнетизм, слабое и сильное ядерное взаимодействие — были объединены в единую силу при рождении Вселенной, сжатые вместе из-за связанных с этим экстремальных температур и плотностей.
Но все изменилось, когда Вселенная расширилась и остыла. Примерно во время инфляции сильное взаимодействие, вероятно, отделилось. И примерно через 10 триллионных долей секунды после Большого взрыва электромагнитное и слабое взаимодействия также стали различаться.
Сразу после инфляции Вселенная, вероятно, была заполнена горячей плотной плазмой. Но примерно за 1 микросекунду (от 10 до минус 6 секунд) или около того он достаточно остыл, чтобы позволить сформироваться первым протонам и нейтронам, считают исследователи.
В первые три минуты после Большого взрыва эти протоны и нейтроны начали сливаться вместе, образуя дейтерий (также известный как тяжелый водород). Затем атомы дейтерия соединились друг с другом, образовав гелий-4.
Рекомбинация: Вселенная становится прозрачной
Все вновь созданные атомы были положительно заряжены, поскольку Вселенная была еще слишком горячей, чтобы способствовать захвату электронов.
Но все изменилось примерно через 380 000 лет после Большого взрыва. В эпоху, известную как рекомбинация, ионы водорода и гелия начали захватывать электроны, образуя электрически нейтральные атомы. Свет значительно рассеивается на свободных электронах и протонах, но гораздо меньше на нейтральных атомах. Так что теперь фотоны могли свободно путешествовать по Вселенной.
Рекомбинация кардинально изменила облик Вселенной; это был непрозрачный туман, а теперь он стал прозрачным. Космическое микроволновое фоновое излучение, которое мы наблюдаем сегодня, относится к этой эпохе.
Тем не менее, Вселенная долгое время была довольно темной после рекомбинации, по-настоящему осветившись только тогда, когда первые звезды начали сиять примерно через 300 миллионов лет после Большого взрыва. Они помогли отменить многое из того, что было достигнуто рекомбинацией. Эти ранние звезды — и, возможно, некоторые другие загадочные источники — испускали достаточно радиации, чтобы расщепить большую часть водорода во Вселенной обратно на составляющие его протоны и электроны.
Этот процесс, известный как реионизация, похоже, завершился примерно через 1 миллиард лет после Большого взрыва. Вселенная сегодня не непрозрачна, как это было до рекомбинации, потому что она так сильно расширилась. По словам ученых, вещество во Вселенной очень разбавлено, поэтому взаимодействия, связанные с рассеянием фотонов, относительно редки.
Со временем звезды притягивались друг к другу, образуя галактики, что приводило к образованию все более крупномасштабных структур во Вселенной. Планеты объединились вокруг некоторых недавно образовавшихся звезд, включая наше собственное Солнце. А 3,8 миллиарда лет назад на Земле зародилась жизнь.
До Большого Взрыва?
Хотя многое о первых мгновениях Вселенной остается спекулятивным, вопрос о том, что предшествовало Большому Взрыву, еще более загадочен и труден для решения.
Во-первых, сам вопрос может быть бессмысленным. Если Вселенная возникла из ничего, как считают некоторые теоретики, то Большой взрыв отмечает момент, когда началось само время. В этом случае не было бы такого понятия, как «раньше», сказал Кэрролл.
Но некоторые концепции рождения вселенной могут предложить возможные ответы. Циклическая модель, например, предполагает, что нашей расширяющейся Вселенной предшествовала сжимающаяся Вселенная. Кэрролл тоже может вообразить, что что-то существовало до Большого взрыва.
«Это может быть просто пустое пространство, которое существовало до того, как произошел наш Большой Взрыв, а затем какая-то квантовая флуктуация породила вселенную, подобную нашей», — сказал он. «Вы можете представить себе небольшой пузырь пространства, оторвавшийся в результате флуктуации и наполнившийся крошечной каплей энергии, которая затем может вырасти во вселенную, которую мы видим благодаря инфляции».
Филиппенко тоже подозревает, что что-то в этом роде может быть правдой.
«Я думаю, что время в нашей вселенной началось с Большого взрыва, но я думаю, что мы были отклонением от предшественника, материнской вселенной», — сказал Филиппенко.
Узнаем ли мы когда-нибудь?
Миссия Европейского космического агентства «Планк», которая вращалась вокруг Земли с 2009 по 2013 год, помогла космологам уточнить свои представления о природе нашей Вселенной и ее происхождении. Подробная карта космического микроволнового фона, созданная космическим кораблем, показала, что наша Вселенная, даже если она возникла от предшественницы, вряд ли снова сожмется в будущем, сказал Space.com астрофизик Дэйв Клементс из Имперского колледжа Лондона.
«Планк не может полностью исключить концепцию прыгающей Вселенной, но, учитывая текущие значения космологических параметров, наша Вселенная не собирается повторно коллапсировать», — сказал Клементс. «Компонент темной энергии, который в данный момент ускоряет расширение Вселенной, должен измениться, чтобы обратить это расширение вспять и привести к большому сжатию».
Используя данные Планка, ученые смогли уточнить свои оценки возраста Вселенной, а также количества видимой материи, темной материи и темной энергии в ней. По словам Клементса, миссия не преподнесла никаких сюрпризов и в основном подтвердила существующие теории.
«Это показывает, что это максимально скучная вселенная», сказал Клементс.
Тем не менее, по его результатам возникло несколько новых вопросов. Например, постоянная Хаббла, описывающая скорость расширения Вселенной, незначительно отличается, измеренная Планком в далекой Вселенной, по сравнению с ее значением, полученным космическим телескопом Хаббла на основе измерений в ближней Вселенной, сказал Клементс.
Вся эта крупица информации помогает космологам лучше моделировать эволюцию Вселенной и приближаться к ответам на важные вопросы о происхождении всего сущего. Ожидается, что предстоящая миссия Европейского космического агентства под названием «Евклид» , запуск которой запланирован на 2023 год, сделает дальнейшие шаги в этом направлении.
Что дальше
Миссия Евклид будет изучать, как скопления и галактики разбросаны по Вселенной в больших масштабах, чтобы помочь астрономам лучше понять эффекты темной энергии. Он также будет изучать то, что астрономы называют слабым гравитационным линзированием, искривление света, вызванное гравитационным притяжением очень массивных объектов. Поскольку более 80% материи во Вселенной невидимы, сила линзирования может дать астрономам подсказки о распределении темной материи.
«Евклид сможет измерить это в гораздо большем масштабе, возможно, почти на половине внегалактического неба или даже больше», — сказал Клементс.
Дальнейшие части этой космической головоломки могут появиться в результате изучения гравитационных волн, ряби в пространстве-времени, возникающей при столкновениях сверхмассивных объектов, таких как черные дыры и нейтронные звезды.
Гравитационные волны, сказал Клементс, должны были возникнуть во время инфляции, периода быстрого расширения в первые моменты существования Вселенной. Таким образом, обнаружение этих ранних гравитационных волн и расшифровка их свойств могут дать беспрецедентные знания о рождении Вселенной.
«Это расскажет нам кое-что о физике, которая привела к раннему очень быстрому расширению Вселенной», — сказал Клементс. «Мы действительно возвращаемся к самым, самым ранним моментам, и если мы лучше поймем инфляцию, мы, надеюсь, сможем лучше понять, был ли Большой взрыв единичным событием или эта прыгающая идея может быть правильной».
Вы можете следить за старшим писателем SPACE.com Майком Уоллом в Твиттере: @michaeldwall. Подписывайтесь на SPACE.com, чтобы быть в курсе последних новостей космической науки и исследований, в Twitter @Spacedotcom и на Facebook.
Дополнительные ресурсы
Чтобы узнать больше о миссии «Планк» и ее стремлении понять происхождение Вселенной, посетите веб-сайт Европейского космического агентства. Для получения информации о предстоящей миссии EUCLID перейдите сюда.
Для получения дополнительной информации об изучении первичных гравитационных волн и о том, как они могут помочь раскрыть тайны рождения Вселенной, прочитайте эту статью Массачусетского технологического института.
Библиография
Муиа, Ф., Большой взрыв: как мы пытаемся его «прислушаться» и какую новую физику он может открыть, The Conversation, 15 июля 2021 г.
https://theconversation.com/big-bang-how-we-are-trying-to-listen-to-it-and-the-new-physics-it-could-unveil-164502
Кастельвекки, Д. , Как гравитационные волны могут разгадать некоторые из глубочайших загадок Вселенной, Природа, 11 апреля 2018 г.
https://sci.esa.int/web/planck
ESA, Евклид
https://sci.esa.int/web/euclid
Эта справочная статья, первоначально опубликованная 21 октября 2011 г., была обновлена 4 февраля 2022 г.
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Майкл Уолл — старший космический писатель Space.com (открывается в новой вкладке) , присоединился к команде в 2010 году. В основном он освещает экзопланеты, космические полеты и военный космос, но, как известно, увлекается космическим искусством. Его книга о поисках инопланетной жизни «Out There» была опубликована 13 ноября 2018 года. Прежде чем стать научным писателем, Майкл работал герпетологом и биологом дикой природы. У него есть докторская степень. по эволюционной биологии Сиднейского университета, Австралия, степень бакалавра Аризонского университета и диплом о высшем образовании в области научного письма Калифорнийского университета в Санта-Круз. Чтобы узнать, какой у него последний проект, вы можете подписаться на Майкла в Твиттере.
Большой взрыв: что на самом деле произошло при рождении нашей Вселенной?
(Изображение предоставлено: MARK GARLICK / SCIENCE PHOTO LIBRARY через Getty Images)Потребовалось чуть больше семи дней, чтобы создать вселенную такой, какой мы ее знаем сегодня. SPACE.com рассматривает тайны небес в нашей серии из восьми частей: История и будущее космоса . Это 5 часть из этой серии.
Наша Вселенная родилась около 13,7 миллиардов лет назад в результате массивного расширения, которое взорвало пространство, как гигантский воздушный шар.
Вкратце это и есть теория Большого Взрыва, которую поддерживают практически все космологи и физики-теоретики. Доказательства, подтверждающие эту идею, обширны и убедительны. Мы знаем, например, что Вселенная продолжает расширяться даже сейчас с постоянно ускоряющейся скоростью.
Ученые также обнаружили предсказанный тепловой отпечаток Большого взрыва, пронизывающее вселенную космическое микроволновое фоновое излучение. И мы не видим никаких объектов явно старше 13,7 миллиардов лет, что позволяет предположить, что наша Вселенная возникла примерно в это время.
«Все эти вещи ставят теорию Большого взрыва на чрезвычайно прочную основу», — сказал астрофизик Алекс Филиппенко из Калифорнийского университета в Беркли. «Большой взрыв — чрезвычайно успешная теория».
Чему учит нас эта теория? Что на самом деле произошло при рождении нашей Вселенной и как она приняла форму, которую мы наблюдаем сегодня?
Связанный: История Вселенной: от Большого взрыва до наших дней за 10 простых шагов
Начало
Традиционная теория Большого взрыва утверждает, что наша Вселенная началась с сингулярности — точки бесконечной плотности и температуры, природа которой сложна для нашего разума, чтобы понять. Однако это может не совсем точно отражать реальность, говорят исследователи, потому что идея сингулярности основана на общей теории относительности Эйнштейна.
«Проблема в том, что нет никаких оснований верить в общую теорию относительности в этом режиме», — сказал Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Это будет неправильно, потому что не принимает во внимание квантовую механику. А квантовая механика, безусловно, будет важна, как только вы доберетесь до этого места в истории Вселенной».
Итак, самое начало вселенной остается довольно туманным. Ученые считают, что они могут воспроизвести историю примерно через 10 с минус 36 секунд — одну триллионную от триллионной триллионной доли секунды — после Большого взрыва.
В этот момент, по их мнению, Вселенная претерпела чрезвычайно короткий и драматический период расширения, расширяясь быстрее скорости света. Он удвоился в размере, возможно, в 100 или более раз, и все это в течение нескольких крошечных долей секунды.
(Может показаться, что инфляция нарушает специальную теорию относительности, но это не так, говорят ученые. Специальная теория относительности утверждает, что никакая информация или материя не могут переноситься между двумя точками в пространстве со скоростью, превышающей скорость света. Но инфляция была расширение самого пространства.)
«Инфляция была «взрывом» Большого Взрыва, — сказал Филиппенко SPACE.com. — До инфляции было немного вещества, которое, вполне возможно, немного расширилось. Нам нужно было что-то вроде инфляции, чтобы сделать Вселенная большая».
Эта быстро расширяющаяся вселенная практически не содержала материи, но, согласно теории, содержала огромное количество темной энергии. Темная энергия — это таинственная сила, которая, по мнению ученых, является движущей силой нынешнего ускоряющегося расширения Вселенной.
Во время инфляции темная энергия заставила Вселенную сгладиться и ускориться. Но это не задержалось надолго.
«Это была просто временная темная энергия», — сказал Кэрролл SPACE. com. «Он превратился в обычную материю и излучение посредством процесса, называемого повторным нагревом. Вселенная превратилась из холодной во время инфляции в горячую снова, когда вся темная энергия исчезла».
Ученые не знают, что могло вызвать инфляцию. По словам Филиппенко, это остается одним из ключевых вопросов космологии Большого взрыва.
На этом рисунке показана временная шкала Вселенной, основанная на теории Большого взрыва и моделях инфляции. (Изображение предоставлено NASA/WMAP)Большой отскок
Большинство космологов считают инфляцию ведущей теорией для объяснения характеристик Вселенной — в частности, того, почему она относительно плоская и однородная, с примерно одинаковым количеством вещества, равномерно распределенным во всех направлениях.
Различные доказательства указывают на то, что инфляция является реальностью, сказал физик-теоретик Энди Альбрехт из Калифорнийского университета в Дэвисе.
«Все они прекрасно сочетаются с инфляционной картиной», — сказал Альбрехт, один из создателей теории инфляции. «Инфляция сделала невероятно хорошо».
Однако инфляция — не единственная идея, пытающаяся объяснить структуру Вселенной. Теоретики придумали другую, названную циклической моделью, которая основана на более ранней концепции, называемой экпиротической вселенной.
Эта идея утверждает, что наша Вселенная не возникла из одной точки или чего-то подобного. Скорее, она отскочила в сторону расширения — гораздо более спокойными темпами, чем предсказывает теория инфляции — из ранее существовавшей Вселенной, которая сжималась. Если эта теория верна, наша Вселенная, вероятно, претерпела бесконечную череду взрывов и схлопываний.
«Начало нашей вселенной было бы прекрасным и конечным», — сказал Берт Оврут из Пенсильванского университета, один из создателей экпиротической теории.
Циклическая модель утверждает, что наша Вселенная состоит из 11 измерений, только четыре из которых мы можем наблюдать (три пространственных и одно временное). Наша четырехмерная часть Вселенной называется браной (сокращение от мембраны).
Согласно идее, в 11-мерном пространстве могут скрываться и другие браны. Столкновение двух бран могло привести к тому, что Вселенная перешла от сжатия к расширению, спровоцировав Большой взрыв, свидетельство которого мы наблюдаем сегодня.
На этом изображении всего неба космического микроволнового фона, созданном спутником «Планк» Европейского космического агентства, видны отголоски Большого взрыва, оставшиеся со времен зарождения Вселенной. (Изображение предоставлено ESA/LFI & HFI Consortia)Известная нам Вселенная обретает форму
Но, во-первых, как наша Вселенная возникла из ничего? Космологи подозревают, что четыре силы, управляющие Вселенной — гравитация, электромагнетизм, слабое и сильное ядерное взаимодействие — были объединены в единую силу при рождении Вселенной, сжатые вместе из-за связанных с этим экстремальных температур и плотностей.
Но все изменилось, когда Вселенная расширилась и остыла. Примерно во время инфляции сильное взаимодействие, вероятно, отделилось. И примерно через 10 триллионных долей секунды после Большого взрыва электромагнитное и слабое взаимодействия также стали различаться.
Сразу после инфляции Вселенная, вероятно, была заполнена горячей плотной плазмой. Но примерно за 1 микросекунду (от 10 до минус 6 секунд) или около того он достаточно остыл, чтобы позволить сформироваться первым протонам и нейтронам, считают исследователи.
В первые три минуты после Большого взрыва эти протоны и нейтроны начали сливаться вместе, образуя дейтерий (также известный как тяжелый водород). Затем атомы дейтерия соединились друг с другом, образовав гелий-4.
Рекомбинация: Вселенная становится прозрачной
Все вновь созданные атомы были положительно заряжены, поскольку Вселенная была еще слишком горячей, чтобы способствовать захвату электронов.
Но все изменилось примерно через 380 000 лет после Большого взрыва. В эпоху, известную как рекомбинация, ионы водорода и гелия начали захватывать электроны, образуя электрически нейтральные атомы. Свет значительно рассеивается на свободных электронах и протонах, но гораздо меньше на нейтральных атомах. Так что теперь фотоны могли свободно путешествовать по Вселенной.
Рекомбинация кардинально изменила облик Вселенной; это был непрозрачный туман, а теперь он стал прозрачным. Космическое микроволновое фоновое излучение, которое мы наблюдаем сегодня, относится к этой эпохе.
Тем не менее, Вселенная долгое время была довольно темной после рекомбинации, по-настоящему осветившись только тогда, когда первые звезды начали сиять примерно через 300 миллионов лет после Большого взрыва. Они помогли отменить многое из того, что было достигнуто рекомбинацией. Эти ранние звезды — и, возможно, некоторые другие загадочные источники — испускали достаточно радиации, чтобы расщепить большую часть водорода во Вселенной обратно на составляющие его протоны и электроны.
Этот процесс, известный как реионизация, похоже, завершился примерно через 1 миллиард лет после Большого взрыва. Вселенная сегодня не непрозрачна, как это было до рекомбинации, потому что она так сильно расширилась. По словам ученых, вещество во Вселенной очень разбавлено, поэтому взаимодействия, связанные с рассеянием фотонов, относительно редки.
Со временем звезды притягивались друг к другу, образуя галактики, что приводило к образованию все более крупномасштабных структур во Вселенной. Планеты объединились вокруг некоторых недавно образовавшихся звезд, включая наше собственное Солнце. А 3,8 миллиарда лет назад на Земле зародилась жизнь.
До Большого Взрыва?
Хотя многое о первых мгновениях Вселенной остается спекулятивным, вопрос о том, что предшествовало Большому Взрыву, еще более загадочен и труден для решения.
Во-первых, сам вопрос может быть бессмысленным. Если Вселенная возникла из ничего, как считают некоторые теоретики, то Большой взрыв отмечает момент, когда началось само время. В этом случае не было бы такого понятия, как «раньше», сказал Кэрролл.
Но некоторые концепции рождения вселенной могут предложить возможные ответы. Циклическая модель, например, предполагает, что нашей расширяющейся Вселенной предшествовала сжимающаяся Вселенная. Кэрролл тоже может вообразить, что что-то существовало до Большого взрыва.
«Это может быть просто пустое пространство, которое существовало до того, как произошел наш Большой Взрыв, а затем какая-то квантовая флуктуация породила вселенную, подобную нашей», — сказал он. «Вы можете представить себе небольшой пузырь пространства, оторвавшийся в результате флуктуации и наполнившийся крошечной каплей энергии, которая затем может вырасти во вселенную, которую мы видим благодаря инфляции».
Филиппенко тоже подозревает, что что-то в этом роде может быть правдой.
«Я думаю, что время в нашей вселенной началось с Большого взрыва, но я думаю, что мы были отклонением от предшественника, материнской вселенной», — сказал Филиппенко.
Узнаем ли мы когда-нибудь?
Миссия Европейского космического агентства «Планк», которая вращалась вокруг Земли с 2009 по 2013 год, помогла космологам уточнить свои представления о природе нашей Вселенной и ее происхождении. Подробная карта космического микроволнового фона, созданная космическим кораблем, показала, что наша Вселенная, даже если она возникла от предшественницы, вряд ли снова сожмется в будущем, сказал Space.com астрофизик Дэйв Клементс из Имперского колледжа Лондона.
«Планк не может полностью исключить концепцию прыгающей Вселенной, но, учитывая текущие значения космологических параметров, наша Вселенная не собирается повторно коллапсировать», — сказал Клементс. «Компонент темной энергии, который в данный момент ускоряет расширение Вселенной, должен измениться, чтобы обратить это расширение вспять и привести к большому сжатию».
Используя данные Планка, ученые смогли уточнить свои оценки возраста Вселенной, а также количества видимой материи, темной материи и темной энергии в ней. По словам Клементса, миссия не преподнесла никаких сюрпризов и в основном подтвердила существующие теории.
«Это показывает, что это максимально скучная вселенная», сказал Клементс.
Тем не менее, по его результатам возникло несколько новых вопросов. Например, постоянная Хаббла, описывающая скорость расширения Вселенной, незначительно отличается, измеренная Планком в далекой Вселенной, по сравнению с ее значением, полученным космическим телескопом Хаббла на основе измерений в ближней Вселенной, сказал Клементс.
Вся эта крупица информации помогает космологам лучше моделировать эволюцию Вселенной и приближаться к ответам на важные вопросы о происхождении всего сущего. Ожидается, что предстоящая миссия Европейского космического агентства под названием «Евклид» , запуск которой запланирован на 2023 год, сделает дальнейшие шаги в этом направлении.
Что дальше
Миссия Евклид будет изучать, как скопления и галактики разбросаны по Вселенной в больших масштабах, чтобы помочь астрономам лучше понять эффекты темной энергии. Он также будет изучать то, что астрономы называют слабым гравитационным линзированием, искривление света, вызванное гравитационным притяжением очень массивных объектов. Поскольку более 80% материи во Вселенной невидимы, сила линзирования может дать астрономам подсказки о распределении темной материи.
«Евклид сможет измерить это в гораздо большем масштабе, возможно, почти на половине внегалактического неба или даже больше», — сказал Клементс.
Дальнейшие части этой космической головоломки могут появиться в результате изучения гравитационных волн, ряби в пространстве-времени, возникающей при столкновениях сверхмассивных объектов, таких как черные дыры и нейтронные звезды.
Гравитационные волны, сказал Клементс, должны были возникнуть во время инфляции, периода быстрого расширения в первые моменты существования Вселенной. Таким образом, обнаружение этих ранних гравитационных волн и расшифровка их свойств могут дать беспрецедентные знания о рождении Вселенной.
«Это расскажет нам кое-что о физике, которая привела к раннему очень быстрому расширению Вселенной», — сказал Клементс. «Мы действительно возвращаемся к самым, самым ранним моментам, и если мы лучше поймем инфляцию, мы, надеюсь, сможем лучше понять, был ли Большой взрыв единичным событием или эта прыгающая идея может быть правильной».
Вы можете следить за старшим писателем SPACE.com Майком Уоллом в Твиттере: @michaeldwall. Подписывайтесь на SPACE.com, чтобы быть в курсе последних новостей космической науки и исследований, в Twitter @Spacedotcom и на Facebook.
Дополнительные ресурсы
Чтобы узнать больше о миссии «Планк» и ее стремлении понять происхождение Вселенной, посетите веб-сайт Европейского космического агентства. Для получения информации о предстоящей миссии EUCLID перейдите сюда.
Для получения дополнительной информации об изучении первичных гравитационных волн и о том, как они могут помочь раскрыть тайны рождения Вселенной, прочитайте эту статью Массачусетского технологического института.
Библиография
Муиа, Ф., Большой взрыв: как мы пытаемся его «прислушаться» и какую новую физику он может открыть, The Conversation, 15 июля 2021 г.
https://theconversation.com/big-bang-how-we-are-trying-to-listen-to-it-and-the-new-physics-it-could-unveil-164502
Кастельвекки, Д. , Как гравитационные волны могут разгадать некоторые из глубочайших загадок Вселенной, Природа, 11 апреля 2018 г.
https://sci.esa.int/web/planck
ESA, Евклид
https://sci.esa.int/web/euclid
Эта справочная статья, первоначально опубликованная 21 октября 2011 г., была обновлена 4 февраля 2022 г.
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Майкл Уолл — старший космический писатель Space.com (открывается в новой вкладке) , присоединился к команде в 2010 году. В основном он освещает экзопланеты, космические полеты и военный космос, но, как известно, увлекается космическим искусством. Его книга о поисках инопланетной жизни «Out There» была опубликована 13 ноября 2018 года. Прежде чем стать научным писателем, Майкл работал герпетологом и биологом дикой природы. У него есть докторская степень. по эволюционной биологии Сиднейского университета, Австралия, степень бакалавра Аризонского университета и диплом о высшем образовании в области научного письма Калифорнийского университета в Санта-Круз. Чтобы узнать, какой у него последний проект, вы можете подписаться на Майкла в Твиттере.
Большой взрыв: что на самом деле произошло при рождении нашей Вселенной?
(Изображение предоставлено: MARK GARLICK / SCIENCE PHOTO LIBRARY через Getty Images)Потребовалось чуть больше семи дней, чтобы создать вселенную такой, какой мы ее знаем сегодня. SPACE.com рассматривает тайны небес в нашей серии из восьми частей: История и будущее космоса . Это 5 часть из этой серии.
Наша Вселенная родилась около 13,7 миллиардов лет назад в результате массивного расширения, которое взорвало пространство, как гигантский воздушный шар.
Вкратце это и есть теория Большого Взрыва, которую поддерживают практически все космологи и физики-теоретики. Доказательства, подтверждающие эту идею, обширны и убедительны. Мы знаем, например, что Вселенная продолжает расширяться даже сейчас с постоянно ускоряющейся скоростью.
Ученые также обнаружили предсказанный тепловой отпечаток Большого взрыва, пронизывающее вселенную космическое микроволновое фоновое излучение. И мы не видим никаких объектов явно старше 13,7 миллиардов лет, что позволяет предположить, что наша Вселенная возникла примерно в это время.
«Все эти вещи ставят теорию Большого взрыва на чрезвычайно прочную основу», — сказал астрофизик Алекс Филиппенко из Калифорнийского университета в Беркли. «Большой взрыв — чрезвычайно успешная теория».
Чему учит нас эта теория? Что на самом деле произошло при рождении нашей Вселенной и как она приняла форму, которую мы наблюдаем сегодня?
Связанный: История Вселенной: от Большого взрыва до наших дней за 10 простых шагов
Начало
Традиционная теория Большого взрыва утверждает, что наша Вселенная началась с сингулярности — точки бесконечной плотности и температуры, природа которой сложна для нашего разума, чтобы понять. Однако это может не совсем точно отражать реальность, говорят исследователи, потому что идея сингулярности основана на общей теории относительности Эйнштейна.
«Проблема в том, что нет никаких оснований верить в общую теорию относительности в этом режиме», — сказал Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Это будет неправильно, потому что не принимает во внимание квантовую механику. А квантовая механика, безусловно, будет важна, как только вы доберетесь до этого места в истории Вселенной».
Итак, самое начало вселенной остается довольно туманным. Ученые считают, что они могут воспроизвести историю примерно через 10 с минус 36 секунд — одну триллионную от триллионной триллионной доли секунды — после Большого взрыва.
В этот момент, по их мнению, Вселенная претерпела чрезвычайно короткий и драматический период расширения, расширяясь быстрее скорости света. Он удвоился в размере, возможно, в 100 или более раз, и все это в течение нескольких крошечных долей секунды.
(Может показаться, что инфляция нарушает специальную теорию относительности, но это не так, говорят ученые. Специальная теория относительности утверждает, что никакая информация или материя не могут переноситься между двумя точками в пространстве со скоростью, превышающей скорость света. Но инфляция была расширение самого пространства.)
«Инфляция была «взрывом» Большого Взрыва, — сказал Филиппенко SPACE.com. — До инфляции было немного вещества, которое, вполне возможно, немного расширилось. Нам нужно было что-то вроде инфляции, чтобы сделать Вселенная большая».
Эта быстро расширяющаяся вселенная практически не содержала материи, но, согласно теории, содержала огромное количество темной энергии. Темная энергия — это таинственная сила, которая, по мнению ученых, является движущей силой нынешнего ускоряющегося расширения Вселенной.
Во время инфляции темная энергия заставила Вселенную сгладиться и ускориться. Но это не задержалось надолго.
«Это была просто временная темная энергия», — сказал Кэрролл SPACE. com. «Он превратился в обычную материю и излучение посредством процесса, называемого повторным нагревом. Вселенная превратилась из холодной во время инфляции в горячую снова, когда вся темная энергия исчезла».
Ученые не знают, что могло вызвать инфляцию. По словам Филиппенко, это остается одним из ключевых вопросов космологии Большого взрыва.
На этом рисунке показана временная шкала Вселенной, основанная на теории Большого взрыва и моделях инфляции. (Изображение предоставлено NASA/WMAP)Большой отскок
Большинство космологов считают инфляцию ведущей теорией для объяснения характеристик Вселенной — в частности, того, почему она относительно плоская и однородная, с примерно одинаковым количеством вещества, равномерно распределенным во всех направлениях.
Различные доказательства указывают на то, что инфляция является реальностью, сказал физик-теоретик Энди Альбрехт из Калифорнийского университета в Дэвисе.
«Все они прекрасно сочетаются с инфляционной картиной», — сказал Альбрехт, один из создателей теории инфляции. «Инфляция сделала невероятно хорошо».
Однако инфляция — не единственная идея, пытающаяся объяснить структуру Вселенной. Теоретики придумали другую, названную циклической моделью, которая основана на более ранней концепции, называемой экпиротической вселенной.
Эта идея утверждает, что наша Вселенная не возникла из одной точки или чего-то подобного. Скорее, она отскочила в сторону расширения — гораздо более спокойными темпами, чем предсказывает теория инфляции — из ранее существовавшей Вселенной, которая сжималась. Если эта теория верна, наша Вселенная, вероятно, претерпела бесконечную череду взрывов и схлопываний.
«Начало нашей вселенной было бы прекрасным и конечным», — сказал Берт Оврут из Пенсильванского университета, один из создателей экпиротической теории.
Циклическая модель утверждает, что наша Вселенная состоит из 11 измерений, только четыре из которых мы можем наблюдать (три пространственных и одно временное). Наша четырехмерная часть Вселенной называется браной (сокращение от мембраны).
Согласно идее, в 11-мерном пространстве могут скрываться и другие браны. Столкновение двух бран могло привести к тому, что Вселенная перешла от сжатия к расширению, спровоцировав Большой взрыв, свидетельство которого мы наблюдаем сегодня.
На этом изображении всего неба космического микроволнового фона, созданном спутником «Планк» Европейского космического агентства, видны отголоски Большого взрыва, оставшиеся со времен зарождения Вселенной. (Изображение предоставлено ESA/LFI & HFI Consortia)Известная нам Вселенная обретает форму
Но, во-первых, как наша Вселенная возникла из ничего? Космологи подозревают, что четыре силы, управляющие Вселенной — гравитация, электромагнетизм, слабое и сильное ядерное взаимодействие — были объединены в единую силу при рождении Вселенной, сжатые вместе из-за связанных с этим экстремальных температур и плотностей.
Но все изменилось, когда Вселенная расширилась и остыла. Примерно во время инфляции сильное взаимодействие, вероятно, отделилось. И примерно через 10 триллионных долей секунды после Большого взрыва электромагнитное и слабое взаимодействия также стали различаться.
Сразу после инфляции Вселенная, вероятно, была заполнена горячей плотной плазмой. Но примерно за 1 микросекунду (от 10 до минус 6 секунд) или около того он достаточно остыл, чтобы позволить сформироваться первым протонам и нейтронам, считают исследователи.
В первые три минуты после Большого взрыва эти протоны и нейтроны начали сливаться вместе, образуя дейтерий (также известный как тяжелый водород). Затем атомы дейтерия соединились друг с другом, образовав гелий-4.
Рекомбинация: Вселенная становится прозрачной
Все вновь созданные атомы были положительно заряжены, поскольку Вселенная была еще слишком горячей, чтобы способствовать захвату электронов.
Но все изменилось примерно через 380 000 лет после Большого взрыва. В эпоху, известную как рекомбинация, ионы водорода и гелия начали захватывать электроны, образуя электрически нейтральные атомы. Свет значительно рассеивается на свободных электронах и протонах, но гораздо меньше на нейтральных атомах. Так что теперь фотоны могли свободно путешествовать по Вселенной.
Рекомбинация кардинально изменила облик Вселенной; это был непрозрачный туман, а теперь он стал прозрачным. Космическое микроволновое фоновое излучение, которое мы наблюдаем сегодня, относится к этой эпохе.
Тем не менее, Вселенная долгое время была довольно темной после рекомбинации, по-настоящему осветившись только тогда, когда первые звезды начали сиять примерно через 300 миллионов лет после Большого взрыва. Они помогли отменить многое из того, что было достигнуто рекомбинацией. Эти ранние звезды — и, возможно, некоторые другие загадочные источники — испускали достаточно радиации, чтобы расщепить большую часть водорода во Вселенной обратно на составляющие его протоны и электроны.
Этот процесс, известный как реионизация, похоже, завершился примерно через 1 миллиард лет после Большого взрыва. Вселенная сегодня не непрозрачна, как это было до рекомбинации, потому что она так сильно расширилась. По словам ученых, вещество во Вселенной очень разбавлено, поэтому взаимодействия, связанные с рассеянием фотонов, относительно редки.
Со временем звезды притягивались друг к другу, образуя галактики, что приводило к образованию все более крупномасштабных структур во Вселенной. Планеты объединились вокруг некоторых недавно образовавшихся звезд, включая наше собственное Солнце. А 3,8 миллиарда лет назад на Земле зародилась жизнь.
До Большого Взрыва?
Хотя многое о первых мгновениях Вселенной остается спекулятивным, вопрос о том, что предшествовало Большому Взрыву, еще более загадочен и труден для решения.
Во-первых, сам вопрос может быть бессмысленным. Если Вселенная возникла из ничего, как считают некоторые теоретики, то Большой взрыв отмечает момент, когда началось само время. В этом случае не было бы такого понятия, как «раньше», сказал Кэрролл.
Но некоторые концепции рождения вселенной могут предложить возможные ответы. Циклическая модель, например, предполагает, что нашей расширяющейся Вселенной предшествовала сжимающаяся Вселенная. Кэрролл тоже может вообразить, что что-то существовало до Большого взрыва.
«Это может быть просто пустое пространство, которое существовало до того, как произошел наш Большой Взрыв, а затем какая-то квантовая флуктуация породила вселенную, подобную нашей», — сказал он. «Вы можете представить себе небольшой пузырь пространства, оторвавшийся в результате флуктуации и наполнившийся крошечной каплей энергии, которая затем может вырасти во вселенную, которую мы видим благодаря инфляции».
Филиппенко тоже подозревает, что что-то в этом роде может быть правдой.
«Я думаю, что время в нашей вселенной началось с Большого взрыва, но я думаю, что мы были отклонением от предшественника, материнской вселенной», — сказал Филиппенко.
Узнаем ли мы когда-нибудь?
Миссия Европейского космического агентства «Планк», которая вращалась вокруг Земли с 2009 по 2013 год, помогла космологам уточнить свои представления о природе нашей Вселенной и ее происхождении. Подробная карта космического микроволнового фона, созданная космическим кораблем, показала, что наша Вселенная, даже если она возникла от предшественницы, вряд ли снова сожмется в будущем, сказал Space.com астрофизик Дэйв Клементс из Имперского колледжа Лондона.
«Планк не может полностью исключить концепцию прыгающей Вселенной, но, учитывая текущие значения космологических параметров, наша Вселенная не собирается повторно коллапсировать», — сказал Клементс. «Компонент темной энергии, который в данный момент ускоряет расширение Вселенной, должен измениться, чтобы обратить это расширение вспять и привести к большому сжатию».
Используя данные Планка, ученые смогли уточнить свои оценки возраста Вселенной, а также количества видимой материи, темной материи и темной энергии в ней. По словам Клементса, миссия не преподнесла никаких сюрпризов и в основном подтвердила существующие теории.
«Это показывает, что это максимально скучная вселенная», сказал Клементс.
Тем не менее, по его результатам возникло несколько новых вопросов. Например, постоянная Хаббла, описывающая скорость расширения Вселенной, незначительно отличается, измеренная Планком в далекой Вселенной, по сравнению с ее значением, полученным космическим телескопом Хаббла на основе измерений в ближней Вселенной, сказал Клементс.
Вся эта крупица информации помогает космологам лучше моделировать эволюцию Вселенной и приближаться к ответам на важные вопросы о происхождении всего сущего. Ожидается, что предстоящая миссия Европейского космического агентства под названием «Евклид» , запуск которой запланирован на 2023 год, сделает дальнейшие шаги в этом направлении.
Что дальше
Миссия Евклид будет изучать, как скопления и галактики разбросаны по Вселенной в больших масштабах, чтобы помочь астрономам лучше понять эффекты темной энергии. Он также будет изучать то, что астрономы называют слабым гравитационным линзированием, искривление света, вызванное гравитационным притяжением очень массивных объектов. Поскольку более 80% материи во Вселенной невидимы, сила линзирования может дать астрономам подсказки о распределении темной материи.
«Евклид сможет измерить это в гораздо большем масштабе, возможно, почти на половине внегалактического неба или даже больше», — сказал Клементс.
Дальнейшие части этой космической головоломки могут появиться в результате изучения гравитационных волн, ряби в пространстве-времени, возникающей при столкновениях сверхмассивных объектов, таких как черные дыры и нейтронные звезды.
Гравитационные волны, сказал Клементс, должны были возникнуть во время инфляции, периода быстрого расширения в первые моменты существования Вселенной. Таким образом, обнаружение этих ранних гравитационных волн и расшифровка их свойств могут дать беспрецедентные знания о рождении Вселенной.
«Это расскажет нам кое-что о физике, которая привела к раннему очень быстрому расширению Вселенной», — сказал Клементс. «Мы действительно возвращаемся к самым, самым ранним моментам, и если мы лучше поймем инфляцию, мы, надеюсь, сможем лучше понять, был ли Большой взрыв единичным событием или эта прыгающая идея может быть правильной».
Вы можете следить за старшим писателем SPACE.com Майком Уоллом в Твиттере: @michaeldwall. Подписывайтесь на SPACE.com, чтобы быть в курсе последних новостей космической науки и исследований, в Twitter @Spacedotcom и на Facebook.
Дополнительные ресурсы
Чтобы узнать больше о миссии «Планк» и ее стремлении понять происхождение Вселенной, посетите веб-сайт Европейского космического агентства. Для получения информации о предстоящей миссии EUCLID перейдите сюда.
Для получения дополнительной информации об изучении первичных гравитационных волн и о том, как они могут помочь раскрыть тайны рождения Вселенной, прочитайте эту статью Массачусетского технологического института.
Библиография
Муиа, Ф., Большой взрыв: как мы пытаемся его «прислушаться» и какую новую физику он может открыть, The Conversation, 15 июля 2021 г.
https://theconversation.com/big-bang-how-we-are-trying-to-listen-to-it-and-the-new-physics-it-could-unveil-164502
Кастельвекки, Д. , Как гравитационные волны могут разгадать некоторые из глубочайших загадок Вселенной, Природа, 11 апреля 2018 г.
https://sci.esa.int/web/planck
ESA, Евклид
https://sci.esa.int/web/euclid
Эта справочная статья, первоначально опубликованная 21 октября 2011 г., была обновлена 4 февраля 2022 г.
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Майкл Уолл — старший космический писатель Space.com (открывается в новой вкладке) , присоединился к команде в 2010 году. В основном он освещает экзопланеты, космические полеты и военный космос, но, как известно, увлекается космическим искусством. Его книга о поисках инопланетной жизни «Out There» была опубликована 13 ноября 2018 года. Прежде чем стать научным писателем, Майкл работал герпетологом и биологом дикой природы. У него есть докторская степень. по эволюционной биологии Сиднейского университета, Австралия, степень бакалавра Аризонского университета и диплом о высшем образовании в области научного письма Калифорнийского университета в Санта-Круз. Чтобы узнать, какой у него последний проект, вы можете подписаться на Майкла в Твиттере.
Большой взрыв: что на самом деле произошло при рождении нашей Вселенной?
(Изображение предоставлено: MARK GARLICK / SCIENCE PHOTO LIBRARY через Getty Images)Потребовалось чуть больше семи дней, чтобы создать вселенную такой, какой мы ее знаем сегодня. SPACE.com рассматривает тайны небес в нашей серии из восьми частей: История и будущее космоса . Это 5 часть из этой серии.
Наша Вселенная родилась около 13,7 миллиардов лет назад в результате массивного расширения, которое взорвало пространство, как гигантский воздушный шар.
Вкратце это и есть теория Большого Взрыва, которую поддерживают практически все космологи и физики-теоретики. Доказательства, подтверждающие эту идею, обширны и убедительны. Мы знаем, например, что Вселенная продолжает расширяться даже сейчас с постоянно ускоряющейся скоростью.
Ученые также обнаружили предсказанный тепловой отпечаток Большого взрыва, пронизывающее вселенную космическое микроволновое фоновое излучение. И мы не видим никаких объектов явно старше 13,7 миллиардов лет, что позволяет предположить, что наша Вселенная возникла примерно в это время.
«Все эти вещи ставят теорию Большого взрыва на чрезвычайно прочную основу», — сказал астрофизик Алекс Филиппенко из Калифорнийского университета в Беркли. «Большой взрыв — чрезвычайно успешная теория».
Чему учит нас эта теория? Что на самом деле произошло при рождении нашей Вселенной и как она приняла форму, которую мы наблюдаем сегодня?
Связанный: История Вселенной: от Большого взрыва до наших дней за 10 простых шагов
Начало
Традиционная теория Большого взрыва утверждает, что наша Вселенная началась с сингулярности — точки бесконечной плотности и температуры, природа которой сложна для нашего разума, чтобы понять. Однако это может не совсем точно отражать реальность, говорят исследователи, потому что идея сингулярности основана на общей теории относительности Эйнштейна.
«Проблема в том, что нет никаких оснований верить в общую теорию относительности в этом режиме», — сказал Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Это будет неправильно, потому что не принимает во внимание квантовую механику. А квантовая механика, безусловно, будет важна, как только вы доберетесь до этого места в истории Вселенной».
Итак, самое начало вселенной остается довольно туманным. Ученые считают, что они могут воспроизвести историю примерно через 10 с минус 36 секунд — одну триллионную от триллионной триллионной доли секунды — после Большого взрыва.
В этот момент, по их мнению, Вселенная претерпела чрезвычайно короткий и драматический период расширения, расширяясь быстрее скорости света. Он удвоился в размере, возможно, в 100 или более раз, и все это в течение нескольких крошечных долей секунды.
(Может показаться, что инфляция нарушает специальную теорию относительности, но это не так, говорят ученые. Специальная теория относительности утверждает, что никакая информация или материя не могут переноситься между двумя точками в пространстве со скоростью, превышающей скорость света. Но инфляция была расширение самого пространства.)
«Инфляция была «взрывом» Большого Взрыва, — сказал Филиппенко SPACE.com. — До инфляции было немного вещества, которое, вполне возможно, немного расширилось. Нам нужно было что-то вроде инфляции, чтобы сделать Вселенная большая».
Эта быстро расширяющаяся вселенная практически не содержала материи, но, согласно теории, содержала огромное количество темной энергии. Темная энергия — это таинственная сила, которая, по мнению ученых, является движущей силой нынешнего ускоряющегося расширения Вселенной.
Во время инфляции темная энергия заставила Вселенную сгладиться и ускориться. Но это не задержалось надолго.
«Это была просто временная темная энергия», — сказал Кэрролл SPACE. com. «Он превратился в обычную материю и излучение посредством процесса, называемого повторным нагревом. Вселенная превратилась из холодной во время инфляции в горячую снова, когда вся темная энергия исчезла».
Ученые не знают, что могло вызвать инфляцию. По словам Филиппенко, это остается одним из ключевых вопросов космологии Большого взрыва.
На этом рисунке показана временная шкала Вселенной, основанная на теории Большого взрыва и моделях инфляции. (Изображение предоставлено NASA/WMAP)Большой отскок
Большинство космологов считают инфляцию ведущей теорией для объяснения характеристик Вселенной — в частности, того, почему она относительно плоская и однородная, с примерно одинаковым количеством вещества, равномерно распределенным во всех направлениях.
Различные доказательства указывают на то, что инфляция является реальностью, сказал физик-теоретик Энди Альбрехт из Калифорнийского университета в Дэвисе.
«Все они прекрасно сочетаются с инфляционной картиной», — сказал Альбрехт, один из создателей теории инфляции. «Инфляция сделала невероятно хорошо».
Однако инфляция — не единственная идея, пытающаяся объяснить структуру Вселенной. Теоретики придумали другую, названную циклической моделью, которая основана на более ранней концепции, называемой экпиротической вселенной.
Эта идея утверждает, что наша Вселенная не возникла из одной точки или чего-то подобного. Скорее, она отскочила в сторону расширения — гораздо более спокойными темпами, чем предсказывает теория инфляции — из ранее существовавшей Вселенной, которая сжималась. Если эта теория верна, наша Вселенная, вероятно, претерпела бесконечную череду взрывов и схлопываний.
«Начало нашей вселенной было бы прекрасным и конечным», — сказал Берт Оврут из Пенсильванского университета, один из создателей экпиротической теории.
Циклическая модель утверждает, что наша Вселенная состоит из 11 измерений, только четыре из которых мы можем наблюдать (три пространственных и одно временное). Наша четырехмерная часть Вселенной называется браной (сокращение от мембраны).
Согласно идее, в 11-мерном пространстве могут скрываться и другие браны. Столкновение двух бран могло привести к тому, что Вселенная перешла от сжатия к расширению, спровоцировав Большой взрыв, свидетельство которого мы наблюдаем сегодня.
На этом изображении всего неба космического микроволнового фона, созданном спутником «Планк» Европейского космического агентства, видны отголоски Большого взрыва, оставшиеся со времен зарождения Вселенной. (Изображение предоставлено ESA/LFI & HFI Consortia)Известная нам Вселенная обретает форму
Но, во-первых, как наша Вселенная возникла из ничего? Космологи подозревают, что четыре силы, управляющие Вселенной — гравитация, электромагнетизм, слабое и сильное ядерное взаимодействие — были объединены в единую силу при рождении Вселенной, сжатые вместе из-за связанных с этим экстремальных температур и плотностей.
Но все изменилось, когда Вселенная расширилась и остыла. Примерно во время инфляции сильное взаимодействие, вероятно, отделилось. И примерно через 10 триллионных долей секунды после Большого взрыва электромагнитное и слабое взаимодействия также стали различаться.
Сразу после инфляции Вселенная, вероятно, была заполнена горячей плотной плазмой. Но примерно за 1 микросекунду (от 10 до минус 6 секунд) или около того он достаточно остыл, чтобы позволить сформироваться первым протонам и нейтронам, считают исследователи.
В первые три минуты после Большого взрыва эти протоны и нейтроны начали сливаться вместе, образуя дейтерий (также известный как тяжелый водород). Затем атомы дейтерия соединились друг с другом, образовав гелий-4.
Рекомбинация: Вселенная становится прозрачной
Все вновь созданные атомы были положительно заряжены, поскольку Вселенная была еще слишком горячей, чтобы способствовать захвату электронов.
Но все изменилось примерно через 380 000 лет после Большого взрыва. В эпоху, известную как рекомбинация, ионы водорода и гелия начали захватывать электроны, образуя электрически нейтральные атомы. Свет значительно рассеивается на свободных электронах и протонах, но гораздо меньше на нейтральных атомах. Так что теперь фотоны могли свободно путешествовать по Вселенной.
Рекомбинация кардинально изменила облик Вселенной; это был непрозрачный туман, а теперь он стал прозрачным. Космическое микроволновое фоновое излучение, которое мы наблюдаем сегодня, относится к этой эпохе.
Тем не менее, Вселенная долгое время была довольно темной после рекомбинации, по-настоящему осветившись только тогда, когда первые звезды начали сиять примерно через 300 миллионов лет после Большого взрыва. Они помогли отменить многое из того, что было достигнуто рекомбинацией. Эти ранние звезды — и, возможно, некоторые другие загадочные источники — испускали достаточно радиации, чтобы расщепить большую часть водорода во Вселенной обратно на составляющие его протоны и электроны.
Этот процесс, известный как реионизация, похоже, завершился примерно через 1 миллиард лет после Большого взрыва. Вселенная сегодня не непрозрачна, как это было до рекомбинации, потому что она так сильно расширилась. По словам ученых, вещество во Вселенной очень разбавлено, поэтому взаимодействия, связанные с рассеянием фотонов, относительно редки.
Со временем звезды притягивались друг к другу, образуя галактики, что приводило к образованию все более крупномасштабных структур во Вселенной. Планеты объединились вокруг некоторых недавно образовавшихся звезд, включая наше собственное Солнце. А 3,8 миллиарда лет назад на Земле зародилась жизнь.
До Большого Взрыва?
Хотя многое о первых мгновениях Вселенной остается спекулятивным, вопрос о том, что предшествовало Большому Взрыву, еще более загадочен и труден для решения.
Во-первых, сам вопрос может быть бессмысленным. Если Вселенная возникла из ничего, как считают некоторые теоретики, то Большой взрыв отмечает момент, когда началось само время. В этом случае не было бы такого понятия, как «раньше», сказал Кэрролл.
Но некоторые концепции рождения вселенной могут предложить возможные ответы. Циклическая модель, например, предполагает, что нашей расширяющейся Вселенной предшествовала сжимающаяся Вселенная. Кэрролл тоже может вообразить, что что-то существовало до Большого взрыва.
«Это может быть просто пустое пространство, которое существовало до того, как произошел наш Большой Взрыв, а затем какая-то квантовая флуктуация породила вселенную, подобную нашей», — сказал он. «Вы можете представить себе небольшой пузырь пространства, оторвавшийся в результате флуктуации и наполнившийся крошечной каплей энергии, которая затем может вырасти во вселенную, которую мы видим благодаря инфляции».
Филиппенко тоже подозревает, что что-то в этом роде может быть правдой.
«Я думаю, что время в нашей вселенной началось с Большого взрыва, но я думаю, что мы были отклонением от предшественника, материнской вселенной», — сказал Филиппенко.
Узнаем ли мы когда-нибудь?
Миссия Европейского космического агентства «Планк», которая вращалась вокруг Земли с 2009 по 2013 год, помогла космологам уточнить свои представления о природе нашей Вселенной и ее происхождении. Подробная карта космического микроволнового фона, созданная космическим кораблем, показала, что наша Вселенная, даже если она возникла от предшественницы, вряд ли снова сожмется в будущем, сказал Space.com астрофизик Дэйв Клементс из Имперского колледжа Лондона.
«Планк не может полностью исключить концепцию прыгающей Вселенной, но, учитывая текущие значения космологических параметров, наша Вселенная не собирается повторно коллапсировать», — сказал Клементс. «Компонент темной энергии, который в данный момент ускоряет расширение Вселенной, должен измениться, чтобы обратить это расширение вспять и привести к большому сжатию».
Используя данные Планка, ученые смогли уточнить свои оценки возраста Вселенной, а также количества видимой материи, темной материи и темной энергии в ней. По словам Клементса, миссия не преподнесла никаких сюрпризов и в основном подтвердила существующие теории.
«Это показывает, что это максимально скучная вселенная», сказал Клементс.
Тем не менее, по его результатам возникло несколько новых вопросов. Например, постоянная Хаббла, описывающая скорость расширения Вселенной, незначительно отличается, измеренная Планком в далекой Вселенной, по сравнению с ее значением, полученным космическим телескопом Хаббла на основе измерений в ближней Вселенной, сказал Клементс.
Вся эта крупица информации помогает космологам лучше моделировать эволюцию Вселенной и приближаться к ответам на важные вопросы о происхождении всего сущего. Ожидается, что предстоящая миссия Европейского космического агентства под названием «Евклид» , запуск которой запланирован на 2023 год, сделает дальнейшие шаги в этом направлении.
Что дальше
Миссия Евклид будет изучать, как скопления и галактики разбросаны по Вселенной в больших масштабах, чтобы помочь астрономам лучше понять эффекты темной энергии. Он также будет изучать то, что астрономы называют слабым гравитационным линзированием, искривление света, вызванное гравитационным притяжением очень массивных объектов. Поскольку более 80% материи во Вселенной невидимы, сила линзирования может дать астрономам подсказки о распределении темной материи.
«Евклид сможет измерить это в гораздо большем масштабе, возможно, почти на половине внегалактического неба или даже больше», — сказал Клементс.
Дальнейшие части этой космической головоломки могут появиться в результате изучения гравитационных волн, ряби в пространстве-времени, возникающей при столкновениях сверхмассивных объектов, таких как черные дыры и нейтронные звезды.
Гравитационные волны, сказал Клементс, должны были возникнуть во время инфляции, периода быстрого расширения в первые моменты существования Вселенной. Таким образом, обнаружение этих ранних гравитационных волн и расшифровка их свойств могут дать беспрецедентные знания о рождении Вселенной.
«Это расскажет нам кое-что о физике, которая привела к раннему очень быстрому расширению Вселенной», — сказал Клементс. «Мы действительно возвращаемся к самым, самым ранним моментам, и если мы лучше поймем инфляцию, мы, надеюсь, сможем лучше понять, был ли Большой взрыв единичным событием или эта прыгающая идея может быть правильной».
Вы можете следить за старшим писателем SPACE.com Майком Уоллом в Твиттере: @michaeldwall. Подписывайтесь на SPACE.com, чтобы быть в курсе последних новостей космической науки и исследований, в Twitter @Spacedotcom и на Facebook.
Дополнительные ресурсы
Чтобы узнать больше о миссии «Планк» и ее стремлении понять происхождение Вселенной, посетите веб-сайт Европейского космического агентства. Для получения информации о предстоящей миссии EUCLID перейдите сюда.
Для получения дополнительной информации об изучении первичных гравитационных волн и о том, как они могут помочь раскрыть тайны рождения Вселенной, прочитайте эту статью Массачусетского технологического института.
Библиография
Муиа, Ф., Большой взрыв: как мы пытаемся его «прислушаться» и какую новую физику он может открыть, The Conversation, 15 июля 2021 г.
https://theconversation.com/big-bang-how-we-are-trying-to-listen-to-it-and-the-new-physics-it-could-unveil-164502
Кастельвекки, Д. , Как гравитационные волны могут разгадать некоторые из глубочайших загадок Вселенной, Природа, 11 апреля 2018 г.
https://sci.esa.int/web/planck
ESA, Евклид
https://sci.esa.int/web/euclid
Эта справочная статья, первоначально опубликованная 21 октября 2011 г., была обновлена 4 февраля 2022 г.
Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].
Майкл Уолл — старший космический писатель Space.com (открывается в новой вкладке) , присоединился к команде в 2010 году. В основном он освещает экзопланеты, космические полеты и военный космос, но, как известно, увлекается космическим искусством. Его книга о поисках инопланетной жизни «Out There» была опубликована 13 ноября 2018 года. Прежде чем стать научным писателем, Майкл работал герпетологом и биологом дикой природы. У него есть докторская степень. по эволюционной биологии Сиднейского университета, Австралия, степень бакалавра Аризонского университета и диплом о высшем образовании в области научного письма Калифорнийского университета в Санта-Круз. Чтобы узнать, какой у него последний проект, вы можете подписаться на Майкла в Твиттере.
Как зародилась Вселенная?
Живая наука поддерживается своей аудиторией. Когда вы покупаете по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Вот почему вы можете доверять нам.
Как возникла Вселенная?
Возможно, это величайшая Великая Тайна и корень всех остальных. Величайшие вопросы человечества — как зародилась жизнь? Что такое сознание? Что такое темная материя, темная энергия, гравитация? — исходить из него.
«Все остальные загадки лежат ниже по течению от этого вопроса», — сказала Энн Друян, автор и вдова астронома Карла Сагана. «Для меня это важно, потому что я человек и не люблю незнания».
Несмотря на то, что теории, пытающиеся разгадать эту тайну, становятся все более сложными, ученых преследует возможность того, что некоторые из наиболее важных звеньев в их цепи рассуждений ошибочны.
Фундаментальные загадки
Согласно стандартной модели Большого взрыва, Вселенная родилась в период инфляции, начавшейся около 13,8 миллиардов лет назад. Подобно быстро расширяющемуся воздушному шару, он раздулся от размеров, меньших размера электрона, до почти своих нынешних размеров за крохотную долю секунды.
Изначально Вселенная была пронизана только энергией. Часть этой энергии застыла в частицы, которые собрались в легкие атомы, такие как водород и гелий. Эти атомы сгустились сначала в галактики, затем в звезды, в огненных печах которых были выкованы все остальные элементы.
Это общепринятая картина происхождения нашей вселенной, как ее изображают ученые. Это мощная модель, объясняющая многое из того, что ученые видят, когда смотрят в небо, например поразительную гладкость пространства-времени в больших масштабах и равномерное распределение галактик по противоположным сторонам Вселенной.
Но в этой истории есть вещи, которые беспокоят некоторых ученых. Начнем с того, что идея о том, что Вселенная претерпела период быстрой инфляции в начале своей истории, не может быть проверена напрямую, и она опирается на существование таинственной формы энергии в начале Вселенной, которая давно исчезла.
«Инфляция — чрезвычайно мощная теория, и все же мы до сих пор не знаем, что вызвало инфляцию и является ли эта теория вообще правильной, хотя она работает очень хорошо», — сказал Эрик Агол, астрофизик из Вашингтонского университета.
Для некоторых ученых инфляция является неуклюжим дополнением к модели Большого Взрыва, необходимой сложностью, необходимой для соответствия наблюдениям. Это будет не последнее дополнение.
«Мы также узнали, что во Вселенной должна быть темная материя, а теперь и темная энергия», — сказал Пол Стейнхардт, физик-теоретик из Принстонского университета. «Итак, модель работает сегодня так: вы говорите: «Хорошо, вы берете немного Большого взрыва, берете немного инфляции, настраиваете это так, чтобы оно имело следующие свойства, затем добавляете определенное количество темной материи и темной энергии». Эти вещи не связаны последовательной теорией».
Стейнхардт беспокоится, что космологи действуют больше как инженеры, чем ученые. Если наблюдение не соответствует текущей модели, они присоединяют другой компонент или переделывают существующие, чтобы они соответствовали. Компоненты не связаны, и нет причин их добавлять, кроме как для сопоставления наблюдений. Это все равно, что пытаться починить старую машину, добавляя новые детали от более новых, но других моделей. Эти части могут работать в краткосрочной перспективе, но в конечном итоге вам понадобится новая машина.
Вечная вселенная
В последние годы Стейнхардт работал с Анной Иджас, физиком-теоретиком из Гарвардского университета, над радикальной альтернативой стандартной модели Большого взрыва.
Согласно их идее, называемой прыгающей космологией, Вселенная рождалась не один раз, а, возможно, несколько раз в бесконечных циклах сжатия и расширения. Теория заменяет «большой взрыв» «большим отскоком», который плавно связывает периоды сжатия и расширения Вселенной и решает многие вопросы, которые преследуют теорию инфляции.
Пара утверждает, что их экпиротическая или «циклическая» теория объясняет не только инфляцию, но и другие космические загадки, включая темную материю, темную энергию и то, почему Вселенная расширяется с постоянно ускоряющейся скоростью. [18 величайших неразгаданных тайн в физике]
Несмотря на споры, прыгающая космология поднимает вероятность того, что Вселенная не имеет возраста и самообновляется. Это перспектива, пожалуй, даже более впечатляющая, чем вселенная с определенным началом и концом, потому что это означало бы, что звезды на небе, даже самые старые, подобны недолговечным светлячкам в великой схеме вещей.
«Я хотел бы надеяться, что усилия, которые общество вкладывает в научные исследования, приближают нас к фундаментальным истинам, а не просто к созданию полезных инструментов», — сказал астроном Калифорнийского технологического института Ричард Мэсси. «Но я в равной степени боюсь обнаружить, что все, что я знаю, неверно, и втайне надеюсь, что это не так».
Дополнительные ресурсы:
- Прочитайте стенограмму лекции Стивена Хокинга «Начало времен». 906:95 Посмотрите, как физик Том Уайнти объясняет начало Вселенной для начинающих.
- Посмотрите это видео от National Geographic о происхождении Вселенной.
Эта статья была обновлена 27 июня 2019 г. автором Live Science Тимом Чилдерсом.
Факты и информация о происхождении Вселенной
Происхождение Вселенной 101
Наиболее подтвержденная теория происхождения нашей Вселенной основана на событии, известном как Большой взрыв. Эта теория родилась из наблюдения, что другие галактики удаляются от нашей с огромной скоростью во всех направлениях, как если бы все они были движимы древней взрывной силой.
Бельгийский священник по имени Жорж Леметр впервые предложил теорию большого взрыва в 1920-х годах, когда он предположил, что Вселенная началась с одного первичного атома. Эта идея получила значительный импульс благодаря наблюдениям Эдвина Хаббла о том, что галактики удаляются от нас во всех направлениях, а также открытию в 1960-х годах космического микроволнового излучения, интерпретируемого как отголоски Большого взрыва, Арно Пензиасом и Робертом Уилсоном. -43 секунды своего существования Вселенная была очень компактной, менее чем в миллион миллиардов миллиардных долей размера одного атома. Считается, что в таком непостижимо плотном, энергетическом состоянии четыре фундаментальные силы — гравитация, электромагнетизм, сильное и слабое ядерное взаимодействие — были объединены в единую силу, но наши современные теории еще не выяснили, как единая, объединенные силы будут работать. Чтобы осуществить это, нам нужно знать, как работает гравитация в субатомном масштабе, но в настоящее время мы этого не знаем.
Также считается, что чрезвычайно близкое расположение позволило самым первым частицам во Вселенной смешиваться, смешиваться и достигать примерно одинаковой температуры. Затем, за невообразимо малую долю секунды, вся эта материя и энергия расширились наружу более или менее равномерно, с крошечными вариациями, вызванными флуктуациями на квантовом уровне. Эта модель головокружительного расширения, называемая инфляцией, может объяснить, почему во Вселенной такая равномерная температура и распределение материи.
После инфляции Вселенная продолжала расширяться, но гораздо медленнее. До сих пор неясно, что именно вызвало инфляцию.
Последствия космической инфляцииС течением времени и охлаждением материи начали формироваться более разнообразные типы частиц, которые в конечном итоге сконденсировались в звезды и галактики нашей нынешней Вселенной.
К тому времени, когда Вселенной исполнилась миллиардная доля секунды, Вселенная достаточно остыла, чтобы четыре фундаментальные силы отделились друг от друга. Фундаментальные частицы Вселенной также сформировались. Однако было еще так жарко, что эти частицы еще не собрались во многие субатомные частицы, которые мы имеем сегодня, такие как протон. По мере того как Вселенная продолжала расширяться, этот горячий первичный бульон, называемый кварк-глюонной плазмой, продолжал остывать. Некоторые коллайдеры частиц, такие как Большой адронный коллайдер ЦЕРН, достаточно мощны, чтобы воссоздать кварк-глюонную плазму.
Излучение в ранней Вселенной было настолько интенсивным, что сталкивающиеся фотоны могли образовывать пары частиц, состоящих из материи и антиматерии, которые во всех отношениях похожи на обычную материю, за исключением противоположного электрического заряда. Считается, что ранняя Вселенная содержала равное количество материи и антиматерии. Но по мере того, как Вселенная остывает, фотоны уже не обладают достаточной силой, чтобы образовывать пары материи и антиматерии. Так что, как в экстремальной игре «музыкальные стулья», многие частицы материи и антиматерии объединились и аннигилировали друг друга.
Каким-то образом выжило некоторое количество избыточной материи, и теперь это материал, из которого состоят люди, планеты и галактики. Наше существование — явный признак того, что законы природы относятся к материи и антиматерии немного по-разному. Исследователи экспериментально наблюдали этот дисбаланс правил, называемый нарушением CP, в действии. Физики все еще пытаются выяснить, как именно материя победила в ранней Вселенной.
Создание атомовВ течение первой секунды Вселенной было достаточно прохладно, чтобы оставшаяся материя объединилась в протоны и нейтроны, знакомые частицы, из которых состоят ядра атомов. И через первые три минуты протоны и нейтроны собрались в ядра водорода и гелия. По массе водород составлял 75 процентов материи ранней Вселенной, а гелий — 25 процентов. Обилие гелия является ключевым предсказанием теории большого взрыва, подтвержденным научными наблюдениями.
Несмотря на наличие атомных ядер, молодая Вселенная была еще слишком горячей, чтобы электроны могли осесть вокруг них и образовать стабильные атомы. Материя Вселенной оставалась электрически заряженным туманом, настолько плотным, что свет с трудом пробивался сквозь него. Потребуется еще 380 000 лет или около того, чтобы Вселенная остыла настолько, чтобы образовались нейтральные атомы — поворотный момент, называемый рекомбинацией. Более холодная Вселенная впервые сделала ее прозрачной, что позволило грохотающим внутри нее фотонам, наконец, беспрепятственно пройти сквозь нее.
Сегодня мы до сих пор видим это первозданное послесвечение как космическое микроволновое фоновое излучение, распространенное по всей Вселенной. Излучение аналогично тому, которое используется для передачи телевизионных сигналов через антенны. Но это самое старое из известных излучений, и оно может хранить много тайн о самых ранних моментах существования Вселенной.
От первых звезд до наших днейВо Вселенной не было ни одной звезды примерно через 180 миллионов лет после Большого взрыва. Именно столько времени потребовалось гравитации, чтобы собрать облака водорода и превратить их в звезды. Многие физики считают, что огромные облака темной материи, до сих пор неизвестного материала, вес которого превышает вес видимой материи более чем в пять раз, послужили гравитационным каркасом для первых галактик и звезд.
После того, как зажглись первые звезды Вселенной, свет, который они выпустили, был достаточно сильным, чтобы еще раз лишить электроны нейтральных атомов, что является ключевой стадией Вселенной, называемой реионизацией. В феврале 2018 года австралийская команда объявила, что они, возможно, обнаружили признаки этого «космического рассвета». Через 400 миллионов лет после Большого взрыва родились первые галактики. Спустя миллиарды лет звезды, галактики и скопления галактик формировались и переформировывались, в результате чего образовалась наша родная галактика, Млечный Путь, и наш космический дом, Солнечная система.
Даже сейчас Вселенная расширяется, и, к удивлению астрономов, скорость расширения увеличивается. Считается, что это ускорение вызвано силой, которая отталкивает гравитацию, называемой темной энергией. Мы до сих пор не знаем, что такое темная энергия, но считается, что она составляет 68 процентов всей материи и энергии Вселенной. Темная материя составляет еще 27 процентов. В сущности, вся материя, которую вы когда-либо видели — от вашей первой любви до звезд над головой — составляет менее пяти процентов Вселенной.
ИСТОЧНИКИ
Калифорнийский технологический институт — Космический микроволновый фон
НАСА — Команда Хаббла побила рекорд космического расстояния
НАСА — Что такое темная энергия?
Природа — Bowman et al.