Деление решать: Онлайн калькулятор. Деление столбиком

Урок математики по теме «Деление дробей в уравнениях»

Форма урока: объяснение нового материала.

Цели урока:

  • Обучающая: выработать навыки учащихся умножать и делить обыкновенные дроби, решать и оформлять задачи на уравнения.
  • Воспитательная: воспитывать самостоятельность, аккуратность
  • Развивающая: развивать внимание, математическую речь, вычислительные навыки учащихся,  интерес к математике.

Ожидаемые результаты: дети научаться решать задачи и уравнения на дроби.

Этапы урока

Время (мин)

Слайды

Организационный момент.
2 Слайд 1
Устная работа и повторение ранее изученного 8 Слайды 2, 3, 4, 5,6
Формирование новых знаний и умений 10 Слайды 7, 8
Физкультминутка 2 Слайды 9, 10
Закрепление нового материала 5 Слайд 11
Проверка знаний (с/р) 10 Слайд 12
Постановка домашнего задания 1 Слайд 13
Подведение итогов урока 2  

ХОД УРОКА

I. Организационный этап

– Здравствуйте, мы проведем сегодня урок по теме «Деление дробей в уравнених». Откройте тетради, запишите число, классная работа и тему урока.
Целью нашего урока является закрепление и проверка умений умножать и делить обыкновенные дроби, а также повторить навыки решения задач и уравнений.

II. Устный опрос учащихся

Чтобы умным в жизни стать
Надо дроби изучать

1) Переведите смешанную дробь в неправильную (Приложение 1, слайд 3)

2) Выделите целую часть (Приложение 1, слайд 4)

3) Умножьте дроби (Приложение 1, слайд 5)

– Повторим правило умножения двух дробей: Чтобы умножить дробь на дробь нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе знаменателем.

4) Выполните деление (в тетрадях с последующей взаимопроверкой, сосед у соседа) (Приложение 1, слайд 6)

– Повторим правило деления двух дробей: Чтобы разделить одну дробь на другую, нужно первую дробь умножить на дробь, обратную второй.

III. Формирование новых знаний и  умений

– При изучении темы деление большое значение имеет умение решать уравнения. Рассмотрим пример и запишем его в тетрадь. (Приложение 1, слайд 7)

– Чтобы решить уравнение необходимо определить какой компонент в уравнении является неизвестным.
– Какой?
– 1 множитель
– Правильно! Чтобы найти неизвестный множитель, что нужно сделать?

– Чтобы найти неизвестный множитель необходимо произведение разделить на известный множитель.
– Находим корень уравнения, выполняя деление. Выполним проверку и запишем ответ.

– А теперь давайте проверим ваше умение решать задачи.

№ 597 (Приложение 1, слайд 7)

– Сколько всего прошел лыжник ? (26 км)
– Сколько километров прошел в первый день?  (неизвестно)
– Сколько километров прошел во второй день?  (неизвестно)
– Какую величину, с какой сравнивают?
– Что возьмем за х?
– Как найти дробь от числа?
– Сколько километров прошел за два дня?
– Как найти?
– Составим уравнение.

– 14 км лыжник прошел во второй день

26 – 14 = 12 км лыжник прошел в первый день.

№  598 (Приложение 1, слайд 8)

– Вспомним что такое 1% (одна сотая)
– Какой дробью запишем 75% (75/100 = 3/4)
– Сколько грибов собрала белка? (неизвестно)
– Сколько грибов собрал бельчонок? (неизвестно)
– Какую величину, с какой сравнивают?
– Что обозначим за икс?
– Как найти дробь от числа?
– Сколько собрали вместе белка и бельчонок?
– Составим уравнение.

200 грибов собрала белка
350 – 200 = 150 грибов собрал бельчонок

IV. Физкультминутка

– Встаем и выполняем несколько упражнений.

А теперь, ребята, встали,
Быстро руки вверх подняли,
В стороны, вперёд, назад
Повернулись вправо, влево,
Тихо сели, вновь за дело.

V. Закрепление нового материала

№ 594

– Сколько собрал Митя?
– Сколько собрал Коля?
– Какую величину, с какой сравнивают?
– Что обозначим за икс?
– Как найти дробь от числа?
– Сколько собрали вместе мальчики?

28 грибов собрал Митя

64 – 28 = 36 грибов собрал Коля

VI. «Математический выбор»

Уравнения, оцениваемые в 3 балла:                           Уравнения, оцениваемые в 5 баллов:

1)                                                                      1)

2)                                                                       2)

3)                                                                    3)  

4)                                                                  4)

Уравнения, оцениваемые в 6 баллов:

1)

2)

3)

4)

Оценки: 5 – 12 баллов; 4 – 9 баллов; 3 – 6 баллов.

Каждый выбирает себе уравнения по «плечу».
Учитель во время работы оценивает учеников.

VII. Итог урока

– С каким настроением вы сегодня работали на уроке?
– Какая задача для вас была самой интересной?
– Ребята чему мы научились на сегодняшнем уроке?
– Как найти часть от числа?
– Как найти неизвестный множитель?

Оценки за урок.

VIII. Домашнее задание

– С листов решить любые три уравнения, из тех которые не решали в классе.

Как объяснить ребенку деление?

Конечно же, прежде чем ваш ребенок отправится в первый класс ему необходимо освоить азы арифметики.

Первоначально ему необходимо научиться правильно, понимать задание, а так же решать его в необходимой последовательности. Лучше всего изначально научить ребенка складывать, вычитать и умножать, а уж только потом делить. Самое главное вы должны понимать, что для того чтобы ребенок понимал как выполнить то или иное действие ему необходимо все демонстрировать наглядно. В данной статье мы подробно поговорим о том, как объяснить ребенку деление.

Как объяснить ребенку деление?

На самом деле, делить ребенок начинает еще в самом маленьком возрасте. Просто он еще до конца не осознает, что он участвует в данном процессе. Вы должны изначально объяснить ребенку, что такое целое, больше, меньше и т.д.,  он должен начать понимать каких игрушек больше, а каких меньше.

1. Поиграйте с малышом в деление

Для этого возьмите, к примеру, конфеты и попросите его поделиться с вами поровну. Изначально конечно ребенок будет действовать самым простым способом, он будет перекладывать конфетки по одной. В этом нет ничего страшного ведь малыш еще совсем маленький. После того как ребенок закончит делить конфеты помогите ему сосчитать сколько всего изначально их было.

Вы можете предложить малышу взять яблоки и угостить каждого члена семьи. Так же необходимо пояснить своему чаду, что не всегда, получается, разделить предметы поровну. Приведите ему пример, что у вас есть пять подушек и вам необходимо поделить их между двумя людьми поровну. Такое попросту не возможно, потому что кому-то достанется три подушки, а кому-то две.

2. Как объяснить ребенку деление Вам подскажут обычные примеры

Объясните ребенку, что первое число это и есть те самые конфеты, а вот второе это вы и он (или еще больше участников). И главное скажите ему, что абсолютно неважно, какие именно предметы он будет делить, самое главное узнать, сколько предметов в итоге окажется у каждого из участников.

Из всего вышесказанного можно сделать вывод о том, что для того чтобы ребенок как можно быстрее понял как делить предметы, ему нужно все наглядно демонстрировать. Приводите ему как можно больше примеров, рисуйте с ним, берите какие-либо предметы и делите их. Если вы будете следовать всем перечисленным рекомендациям, то будьте уверены, ваш ребенок очень скоро сможет без труда делить числа.

Процесс деления можно представить, например, так: если 10 монет раздать 2 людям, то каждый получит по 5 монет. Или так: 10 монет, разложенных в стопки по 2 монеты, дадут 5 стопок.

Как выполняется деление?

Деление одного числа (делимого) на другое (делитель) показывает, сколько делителей содержится в делимом. Например, при делении 4 на 2 мы находим, сколько чисел 2 содержится в числе 4. Результат деления называется частным.

 

Как деление связано с умножением?

Деление — это операция, обратная умножению. Если вы знаете результат деления, то можете записать соответствующее произведение, и наоборот.

 

 

Возврат к исходному значению

Если 10 (делимое) поделить на 2 (делитель), то получится 5 (частное). Умножая частное (5) на делитель (2), мы получаем значение исходного
делимого (10).

Другой подход к делению

Деление также показывает, сколько раз в делимом встречаются группы, равные делителю. Ответом будет то же самое частное.
В этом примере 30 футбольных мячей делятся на группы по 3 мяча.

Получилось ровно 10 групп по 3 мяча (без остатка), поэтому 30 : 3 = 10.

Схема деления деления на однозначное число

 

Деление с остатком

Если одно число не делится на другое нацело, возникает остаток. Его можно преобразовать в десятичную дробь, как показано ниже.

 

Упрощение деления

Иногда делитель можно представить как произведение нескольких сомножителей. Тогда процедура деления сводится к нескольким более простым делениям.

Этим методом можно пользоваться и в более сложных задачах.

Используйте синтетическое деление, чтобы определить, является ли данное значение k нулем этого многочлена. Если нет, определите p(k).

Предварительное вычисление алгебры Предварительное исчисление Предварительное исчисление

МакКинли К.

спросил 13/11/20

Используйте синтетическое деление, чтобы определить, является ли данное значение для  нулем этого многочлена. Если нет, определите .

p(x)=2x 3 −3x 2 −11x−20; k=4

является ли k нулем этого многочлена?

Подписаться І 1

Подробнее

Отчет

2 ответа от опытных наставников

Лучший Новейшие Самый старый

Автор: Лучшие новыеСамые старые

Рейнальдо Г. ответил 13.11.20

Репетитор

Новое в Византе

Опыт работы учителем предварительного исчисления

См. таких репетиторов

Смотрите таких репетиторов

Если остаток от деления равен нулю, это доказывает, что делитель является множителем делимого.

Учитывая p(x) = 2x 3 — 3x 2 — 11x — 20 и k = 4:

4 | 2 -3 -11 -20 дано

4 | 2 -3 -11 -20 ниже 2

2

4 | 2-3-11-20 умножить 4*2=8; -3 + 8 = 5

8

2 5

4 | 2-3-11-20 умножить 4*5=20; -11 + 20 = 9

8 20

2 5 9

4 | 2-3-11-20 умножить 4*9=36; -20 + 36 = 16

8 20 36

2 5 9 16

p(k) = p(4) = 16, согласно теореме об остатках

Поскольку остаток не равен нулю, то k = 4 является , а не нулем многочлена.

Голосовать за 0 голос против

Подробнее

Отчет

Патрик Л. ответил 13.11.20

Репетитор

4,8 (58)

Использование математики в технике и естественных науках

См. таких репетиторов

Смотрите таких репетиторов

4 | 2 -3 -11 -20

8 20 36

2 5 9 16

P(4) = 16. По теореме об остатках 4 не равно нулю, поскольку остаток не равен нулю.

Если вы используете Desmos и введете полиномиальную функцию, то пересечение по оси x будет около (3,709, 0). В этом случае k = 4 не является одним из нулей.

Голосовать за

0 голос против

Подробнее

Отчет

Все еще ищете помощи? Получите правильный ответ, быстро.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *