Порядок выполнения действий в математике: правила, примеры
Sign in
Password recovery
Восстановите свой пароль
Ваш адрес электронной почты
MicroExcel.ru Математика Арифметика Порядок действий в математике
В данной публикации мы рассмотрим правила в математике касательно порядка выполнения арифметических действий (в том числе в выражениях со скобками, возведением в степень или извлечением корня), сопроводив их примерами для лучшего понимания материала.
- Порядок выполнения действий
- Общее правило
- Примеры со скобками
- Возведение в степень/извлечение корня
Отметим сразу, что действия рассматриваются от начала примера к его концу, т.е. слева направо.
Общее правило
сначала выполняются умножение и деление, а затем сложение и вычитание полученных промежуточных значений.
Давайте подробно рассмотрим пример: 2 ⋅ 4 + 12 : 3.
Над каждым действием мы написали число, которое соответствует порядку его выполнения, т. е. решение примера состоит из трех промежуточных действий:
- 2 ⋅ 4 = 8
- 12 : 3 = 4
- 8 + 4 = 12
Немного потренировавшись в дальнейшем можно все действия выполнять цепочкой (в одну/несколько строк), продолжая исходное выражение. В нашем случае получается:
2 ⋅ 4 + 12 : 3 = 8 + 4 = 12.
Если подряд идут несколько действий умножения и деления, то они также выполняются подряд, и их можно объединить при желании.
Решение:
- 5 ⋅ 6 : 3 = 10 (совместное выполнение действий 1 и 2)
- 18 : 9 = 2
- 7 + 10 = 17
- 17 – 2 = 15
Цепочка примера:
7 + 5 ⋅ 6 : 3 – 18 : 9 = 7 + 10 – 2 = 15.
Примеры со скобками
Действия в скобках (если они есть) выполняются в первую очередь. А внутри них действует все тот же принятый порядок, описанный выше.
Решение можно разбить на действия ниже:
- 7 ⋅ 4 = 28
- 28 – 16 = 12
- 15 : 3 = 5
- 9 : 3 = 3
- 5 + 12 = 17
- 17 – 3 = 14
При расстановке действий выражение в скобках можно условно воспринимать как одно целое/число. Для удобства мы выделили его в цепочке ниже зеленым цветом:
15 : 3 + (7 ⋅ 4 – 16) – 9 : 3 = 5 + (28 – 16) – 3 = 5 + 12 – 3 = 14.
Скобки в скобках
Иногда в скобках могут быть еще одни скобки (называются вложенными). В таких случаях сперва выполняются действия во внутренних скобках.
Раскладка примера в цепочку выглядит так:
11 ⋅ 4 + (10 : 5 + (16 : 2 – 12 : 4)) = 44 + (2 + (8 – 3)) = 44 + (2 + 5) = 51.
Возведение в степень/извлечение корня
Данные действия выполняется в самую первую очередь, т.е. даже до умножения и деления. При этом если они касаются выражения в скобках, то сначала производятся вычисления внутри них. Рассмотрим пример:
Порядок действий:
- 19 – 12 = 7
- 72 = 49
- 62 = 36
- 4 ⋅ 5 = 20
- 36 + 49 = 85
- 85 + 20 = 105
Цепочка примера:
62 + (19 – 12)2 + 4 ⋅ 5 = 36 + 49 + 20 = 105.
ЧАЩЕ ВСЕГО ЗАПРАШИВАЮТ
Таблица знаков зодиака
Нахождение площади трапеции: формула и примеры
Нахождение длины окружности: формула и задачи
Римские цифры: таблицы
Таблица синусов
Тригонометрическая функция: Тангенс угла (tg)
Нахождение площади ромба: формула и примеры
Нахождение объема цилиндра: формула и задачи
Тригонометрическая функция: Синус угла (sin)
Геометрическая фигура: треугольник
Нахождение объема шара: формула и задачи
Тригонометрическая функция: Косинус угла (cos)
Нахождение объема конуса: формула и задачи
Таблица сложения чисел
Нахождение площади квадрата: формула и примеры
Что такое тетраэдр: определение, виды, формулы площади и объема
Нахождение объема пирамиды: формула и задачи
Признаки подобия треугольников
Нахождение периметра прямоугольника: формула и задачи
Формула Герона для треугольника
Что такое средняя линия треугольника
Нахождение площади треугольника: формула и примеры
Нахождение площади поверхности конуса: формула и задачи
Что такое прямоугольник: определение, свойства, признаки, формулы
Разность кубов: формула и примеры
Степени натуральных чисел
Нахождение площади правильного шестиугольника: формула и примеры
Тригонометрические значения углов: sin, cos, tg, ctg
Нахождение периметра квадрата: формула и задачи
Теорема Фалеса: формулировка и пример решения задачи
Сумма кубов: формула и примеры
Нахождение объема куба: формула и задачи
Куб разности: формула и примеры
Нахождение площади шарового сегмента
Что такое окружность: определение, свойства, формулы
§ Порядок действий в решении примеров по математике
Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.
Пожалуйста, добавьте нас в исключения блокировщика.
Скрыть меню
На главную страницу
Войти при помощи
Темы уроков
Начальная школа
- Геометрия: начальная школа
- Действия в столбик
- Деление с остатком
- Законы арифметики
- Периметр
- Порядок действий
- Разряды и классы. Разрядные слагаемые
- Счет в пределах 10 и 20
- Взаимно обратные числа и дроби
- Десятичные дроби
- Натуральные числа
- Нахождение НОД и НОК
- Обыкновенные дроби
- Округление чисел
- Перевод обыкновенной дроби в десятичную
- Площадь
- Проценты
- Свойства сложения, вычитания, умножения и деления
- Среднее арифметическое
- Упрощение выражений
- Уравнения 5 класс
- Числовые и буквенные выражения
Математика 6 класс
- Масштаб
- Модуль числа
- Окружность. Площадь круга
- Отношение чисел
- Отрицательные и положительные числа
- Периодическая дробь
- Признаки делимости
- Пропорции
- Рациональные числа
- Система координат
- Целые числа
Алгебра 7 класс
- Алгебраические дроби
- Как применять формулы сокращённого умножения
- Многочлены
- Одночлены
- Системы уравнений
- Степени
- Уравнения
- Формулы сокращённого умножения
- Функция в математике
Геометрия 7 класс
- Точка, прямая и отрезок
- Что такое аксиома и теорема
Алгебра 8 класс
- Квадратичная функция. Парабола
- Квадратные неравенства
- Квадратные уравнения
- Квадратный корень
- Неравенства
- Системы неравенств
- Стандартный вид числа
- Теорема Виета
Алгебра 9 класс
- Возрастание и убывание функции
- Нули функции
- Область определения функции
- Отрицательная степень
- Среднее
Алгебра 10 класс
- Иррациональные числа
Алгебра 11 класс
- Факториал
Это место оставлено для самой лучшей фразы. Администратор
на главную
Введите тему
Русский язык Поддержать сайт
При расчётах примеров нужно соблюдать определённый порядок действий. С помощью правил ниже, мы разберёмся в каком порядке выполняются действия и для чего нужны скобки.
Если в выражении скобок нет, то:
- сначала выполняем слева направо все действия умножения и деления;
- а потом слева направо все действия сложения и вычитания.
Рассмотрим порядок действий в следующем примере.
Напоминаем вам, что порядок действий в математике расставляется слева направо (от начала к концу примера).
При вычислении значения выражения можно вести запись двумя способами.
Первый способ
- Каждое действие записывается отдельно со своим номером под примером.
- После выполнения последнего действия ответ обязательно записывается в исходный пример.
Запомните!
При расчёте результатов действий с двузначными и/или трёхзначными числами обязательно приводите свои расчёты в столбик.
Второй способ
- Второй способ называется запись «цепочкой». Все вычисления проводятся в точно таком же порядке действий, но результаты записываются сразу после знака равно.
Запомните!
Если выражение содержит скобки, то сначала выполняют действия в скобках.
Внутри самих скобок действует правило порядка действий как в выражениях без скобок.
Если внутри скобок находятся ещё одни скобки, то сначала выполняются действия внутри вложенных (внутренних) скобок.
Порядок действий и возведение в степень
Если в примере содержится числовое или буквенное выражение в скобках, которое надо возвести в степень, то:
- Сначала выполняем все действия внутри скобок
- Затем возводим в степень все скобки и числа, стоящие в степени, слева направо (от начала к концу примера).
- Выполняем оставшиеся действия в обычном порядке
ПОРЯДОК ДЕЙСТВИЙ
ПОРЯДОК ДЕЙСТВИЙКак посчитать 2 + 3 х 7? Ответ 35 или ответ 23? Чтобы знать правильный ответ, нужно знать правильный порядок действий в отношении сложения, вычитания, умножения, деления и т. д.
- Правило 20:
- Умножение и деление должны быть завершены до
сложение и вычитание.
2 + 3 х 7 = 2 + 21 = 23 — правильный ответ на поставленный выше вопрос.
Как вычислить (2 + 3) x (7 — 3)? ответ 32, 20 или ответ 14? Чтобы знать правильный ответ, нужно знать правильный порядок операций сложения, вычитания, умножения, деления и скобок.
- Правило 21:
- Выражения в скобках рассматриваются как одно число
и должен быть рассчитан в первую очередь.
(2 + 3) х (7 — 3) = 5 х 4 = 20 — правильный ответ на вопрос выше. проблема
Как бы вы вычислили [3 + 7 — (2 + 3 x 6) +2 x 5 -7 +1]?
- Правило 22:
- Если скобки заключены в другие скобки, работайте изнутри наружу.
В выражении выражение (2 + 3 x 6) является самой внутренней скобкой и должно быть вычислено первым. 2 + 3 х 6 = 2 + 18 = 20.
Теперь выражение изменено на . Следующая скобка, которую нужно вычислить, это 7 — 20 + 2 x 5 = 7 – 20 + 10 = — 13 + 10 = — 3.
Теперь выражение сокращается до [3 + {-3} — 7 + 1] = 0 — 7 + 1 = — 6.
Как бы вы рассчитали.
- Правило 23:
- В скобках указано упростить
выражение в круглых скобках, прежде чем продолжить. Отдел
символ играет ту же роль, что и скобка. Он предписывает вам
рассматривать количество над числителем, как если бы оно было заключено в
скобки, и рассматривать количество под числителем, как если бы оно
были заключены в еще одну скобку. Когда вы закончите это
задача, у вас есть то, что кажется двумя дробями, которые вы добавляете.
Не так! может быть
написано и
умножение должно быть завершено перед сложением в каждом
скобка..
= Оба скобки были упрощены. Теперь выполните умножение на урожай . Последнее, что нужно делать это дополнение.
Если вы хотите больше примеров и задач для работы, нажмите на соответствующее слово.
- Правило 20
- Правило 21
- Правило 22
- Правило 23
Вам нужна дополнительная помощь? Пожалуйста, разместите свой вопрос на нашем S.O.S. Математика CyberBoard.
Свяжитесь с нами
Математика Медикс, ООО. — П.О. Box 12395 — Эль-Пасо, Техас 79913 — США
пользователей онлайн за последний час
Порядок действий — Бесплатная помощь по математике
Введение
Порядок операций — очень простая концепция, необходимая для правильного понимания математики. В отличие от чтения, где мы всегда работаем слева направо, иногда с математикой нам нужно решить одну часть задачи перед другой, иначе окончательный ответ может быть неверным! Мы используем термин «порядок операций», чтобы описать, над какой частью проблемы нужно работать в первую очередь. Возьмем это уравнение в качестве примера:
$$ 4+6 \дел 2 * 11 = ? $$Если бы вы просто решали слева направо, ответ был бы неверным. Давайте сделаем это сейчас: 4 + 6 = 10. Разделите это на 2, чтобы получить 5. Умножьте 5 на 11, чтобы получить 55. К сожалению, хотя это казалось правильным, этот ответ неверен.
Правильный порядок действий
Порядок действий позволит вам правильно решить эту задачу. Порядок такой: Скобки , Экспоненты , Умножение и Деление и, наконец, Сложение и вычитание . Всегда сначала выполняйте операции внутри круглых скобок, а затем выполняйте операции с показателями степени. После этого выполните все умножение и деление слева направо, и, наконец, выполните все сложение и вычитание слева направо.
Популярным способом запоминания заказа является аббревиатура PEMDAS. Скобки, экспоненты, умножение и деление, сложение и вычитание. Вы также можете создать небольшую фразу, например «