Что делается сначала умножение или сложение: Какое из действий (умножение, деление, сложение или вычитание) нужно выполнить первым, определяя значение выражения (31⋅1−0):31+81…

Содержание

Порядок действий в математике. Действия первой, второй ступеней в выражениях. Что первое умножение или деление в 2023 году

Действия первой и второй ступени с натуральными числами. Порядок действий

Мы уже рассмотрели арифметические действия сложения и вычитания. Эти действия называются действиями первой ступени. Умножение и деление принято считать действиями второй ступени. Если в математическом выражении есть несколько действий, включая действия и первой, и второй ступени, есть разные числа, соответственно результат зависит от порядка совершенных действий. Поэтому при решении примеров следует соблюдать правильный порядок действий.

Если в выражении нет скобок и присутствуют только действия второй ступени, то действия выполняются в том порядке, в котором они написаны, слева направо.

Например, 80 : 4 ⋅ 2 : 10 = 20 ⋅ 2 : 10 = 40 : 10 = 4

Если в выражении нет скобок и присутствуют только действия первой ступени, то действия выполняются в том порядке, в котором они написаны, слева направо.

Например, 56 + 10 – 25 + 30 = 66 – 25 + 30 = 41 + 30 = 71

Если в выражении нет скобок и случаются действия разных степеней, то сначала выполняют действия  второй ступени, а затем действия первой ступени. Напомним, умножение и деление считаются действиями второй ступени, сложение и вычитание – действиями первой ступени.

Например, 43 + 25 ⋅ 4 – 10. Сначала выполним умножение 25 ⋅ 4 = 100, 43 + 100 – 10 = 133.

Если в выражении есть скобки, сначала выполняем действия в скобках, а затем все остальные согласно порядку действий. Если в скобках записано выражение из нескольких действий первой и второй ступеней, то в скобках также сначала выполняем действия второй ступени.

То есть порядок действий в выражении будет следующим:

  1. действия в скобках
  2. умножение и деление,
  3. сложение и вычитание.

Действия в пределах одной ступени выполняются поочередно слева направо.

Сначала сложение или вычитание?

Сложение и вычитание являются действиями первой ступени, если нет скобок, то они выполняются поочередно слева направо.

Какое первое действие – умножение или деление?

И умножение, и деление – это действия второй степени, они «равноправны». Поэтому, если нет скобок, действия выполняются поочередно слева направо.

Сначала умножение или сложение?

Поскольку умножение является действием высшей степени, а сложение – действием низшей степени, если нет скобок, то сначала выполняем умножение.

Что сначала – деление или вычитание?

Поскольку деление является действием высшей степени, а вычитание – действием низшей степени, если нет скобок, сначала выполняем деление.

Алгоритм вычисления числового выражения

Перед вычислением числового выражения следует определить порядок действий и только после этого приступать к расчетам.

Рассмотрим выражение с несколькими действиями и скобками.

(53 – 42 : 7) ⋅ (22 ⋅ 2 +36 — 12) + 30

Первоочередность действий в данном выражении будет такой:

  • 42 разделить на 7 (42 : 7 = 6)
  • Из 53 вычесть результат первого действия: 53 – 6 = 47
  • Во вторых скобках сначала нужно выполнить умножение 22 на 2: 22 ⋅ 2 = 44
  • К результату умножения прибавляем 36: 44 + 36 = 80
  • Из полученной суммы вычитаем 12: 80 – 12 = 68
  • Умножим множители, которые являются результатами выполнения действий в первых и вторых скобках: 47 ⋅ 68 = 3196
  • К произведению прибавляем 30: 3196 + 30 = 3226

Ответ: (53 – 42 : 7) ⋅ (22 ⋅ 2 +36 -12) + 30 = 3226

Порядок действий с круглыми, квадратными и фигурными скобками

В математических выражениях встречаются не только круглые () скобки, но и квадратные —  [ ]  и фигурные  { }. Фигурные и квадратные скобки используют тогда, когда у скобки необходимо взять выражение в скобках. Порядок действий со скобками следующий: сначала выполняем действия внутри круглых скобок согласно правилам последовательности, второй этап – действия в квадратных скобках, третий этап – действия в фигурных скобках согласно правилам последовательности.

Рассмотрим выражение с круглыми и квадратными скобками

100 — 4 ⋅ [14 + 45 : (10 + 5)] + 6 ⋅ (30 + 4 ⋅ 5 + 10).

  1. Выполним действия в круглых скобках:

10 + 5 = 15

30 + 4 ⋅ 5 + 10 = 30 + 20 + 10 = 60

  1. Выполним действия в квадратных скобках: 14 + 45 : 15 = 17
  2. Выполним остальные действия: 100 – 4 ⋅ 17 + 6 ⋅ 60 = 100 – 68 + 360 = 32 + 360 = 392

Что выполняется вперед, деление или умножение?

Что выполняется вперед, деление или умножение?

Рассмотрим примеры.20/4*2. Понятно, что если выполнять сначала деление, потом умножение мы получим правильный результат 20/4 = 5. 5*2 = 10.Если же выполнить сначала умножение, а потом деление то, ответ будет совершенно иным и конечно же неправильным. 4*2 = 8. 20/8 = 2,5. Причина такой ошибки в том, что операции деления умножения и деления выполняются в порядке их расположения, то есть слева направо.Второй пример. 20*5/4. Проверяем правило.

По порядку расположения сначала умножение. Умножаем 20*5=100, 100/4=25. Правильно.Если же выполним сначала деление, а потом умножение, то получим: 5/4 = 1,25. Далее 20/1,25 = 16.Ответ неверный. Вывод: все зависит от порядка расположения этих операций.

Чтобы ответить на данный вопрос необходимо вспомнить последовательность выполнения математических операций. Если в примере есть выражение в скобках, то оно делается в первую очередь. Если выбирать между действиями «сложение», «вычитание», «умножение» и «деление», то в первую очередь делаем «умножение» или «»деление».Если же в примере только деление и умножение, то действия выполняются последовательно слева направо.

Мы должны при присутствии только деления и умножения в примере, и без участия скобок, действовать по порядку. Если сначала действие с делением, а потом с умножением, то делим, результат далее умножаем. Если сначала умножение, потом деление, то умножаем, результат далее делим. Когда есть действие в скобках, вроде такого (5*2):(2*1), то умножаем что в скобках сначала, а результаты делим, 10(результат первой скобки):2(результат второй скобки). Если знаки вычитания и прибавления есть, все равно, сначала слева направо выполняем деление или умножение, или умножение или деление, что стоит первым среди этих действий. Просто так принято по правилам. Если бы правило было иным, справа налево, то тогда ответы принимались бы те за верные, что даются при подобном порядке. А так у нас априори верные именно

слева направо. И для расчетов берутся именно они. Поэтому даже если в решении справа налево и получается целое «вполне нормальное» число, это не признак того, что пример решен верно.

действия выполняются по порядку, слева направо. но если в примере присутствуют еще и сложение и вычитание, то в начале выполняют деление с умножением, потом уже сложение и вычитание. а если присутствуют еще и скобки, то в первую очередь решают то, что в скобках.

Слева направо если есть сложение и вычитания они делаются в последний очередь

Это часто встречаемый вопрос у ребят и они часто допускают ошибки. Это в заданиях по информатике и математике часто встречается. Деление и умножение равноправны, поэтому они выполняются по порядку. Так в примере 1+250*5/10 сначала 250*5, потом делим на 10 и только потом прибавляем один. Если будет наоборот 15- 250/5*10, то сначала 250/5, потом умножаем на десять по порядку и только потом из 15 вычитаем полученный результат. По приоритету операций у нас 1 возведение в степень, 2 умножение и деление, 3 вычитание и сложение. Если есть скобки, то сначала они.

Очень важно, чтобы правильно решать задачи по математике, знать порядок выполнения вычислений.Рассмотрим пример:20:4*5 (двадцать разделить на четыре и умножить на пять). Решаем такой пример, по порядку выполняя действия (слева направо).Получится вот что: двадцать разделить на четыре — будет пять, теперь пять умножаем на пять, получится двадцать пять. То есть, и деление, и умножение имеют одинаковую первоочередность, преимуществом обладает то действие. которое стоит первым в примере.