Сначала сложение или умножение без скобок: Порядок выполнения действий в выражениях без скобок и со скобками

Содержание

Сначала умножение или сложение без скобок. Порядок выполнения действий в выражениях без скобок и со скобками

Мы рассмотрим в этой статье три варианта примеров:

1. Примеры со скобками (действия сложения и вычитания)

2. Примеры со скобками (сложение, вычитание, умножение, деление)

3. Примеры, в которых много действий

1 Примеры со скобками (действия сложения и вычитания)

Рассмотрим три примера. В каждом из них порядок действий обозначен цифрами красного цвета:

Мы видим, что порядок действий в каждом примере будет разный, хотя числа и знаки одинаковые. Это происходит потому, что во втором и третьем примере есть скобки.

*Это правило для примеров без умножения и деления. Правила для примеров со скобками, включающих действия умножения и деления мы рассмотрим во второй части этой статьи.

Чтобы не запутаться в примере со скобками, можно превратить его в обычный пример, без скобок. Для этого результат, полученный в скобках, записываем над скобками, далее переписываем весь пример, записывая вместо скобок этот результат, и далее выполняем все действия по порядку, слева направо:

В несложных примерах можно все эти операции производить в уме. Главное — сначала выполнить действие в скобках и запомнить результат, а затем считать по порядку, слева направо.

А теперь — тренажеры!

1) Примеры со скобками в пределах до 20. Онлайн тренажер.

2) Примеры со скобками в пределах до 100. Онлайн тренажер.

3) Примеры со скобками. Тренажер №2

4) Вставь пропущенное число — примеры со скобками. Тренажер

2 Примеры со скобками (сложение, вычитание, умножение, деление)

Теперь рассмотрим примеры, в которых кроме сложения и вычитания есть умножение и деление.

Сначала рассмотрим примеры без скобок:

Есть одна хитрость, как не запутаться при решении примеров на порядок действий. Если нет скобок, то выполняем действия умножения и деления, далее переписываем пример, записывая вместо этих действий полученные результаты. Затем выполняем сложение и вычитание по порядку:

Если в примере есть скобки, то сначала нужно избавиться от скобок: переписать пример, записывая вместо скобок полученный в них результат. Затем нужно выделить мысленно части примера, разделенные знаками «+» и «-«, и посчитать каждую часть отдельно. Затем выполнить сложение и вычитание по порядку:

3 Примеры, в которых много действий

Если в примере много действий, то удобнее будет не расставлять порядок действий во всем примере, а выделить блоки, и решить каждый блок отдельно. Для этого находим свободные знаки «+» и «–» (свободные — значит не в скобках, на рисунке показаны стрелочками).

Эти знаки и будут делить наш пример на блоки:

Выполняя действия в каждом блоке не забываем про порядок действий, приведенный выше в статье. Решив каждый блок, выполняем действия сложения и вычитания по порядку.

А теперь закрепляем решение примеров на порядок действий на тренажерах!

Если у вас не открываются игры или тренажёры, читайте . В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория «Ахиллес и черепаха». Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт… Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что «… дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось… к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса…

» [Википедия, » Апории Зенона «]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие «бесконечность» в этой ситуации, то правильно будет говорить «Ахиллес бесконечно быстро догонит черепаху».

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию «Ахиллес и черепаха» очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто — достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве — это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, «во множестве не может быть двух идентичных элементов», но если идентичные элементы во множестве есть, такое множество называется «мультимножество». Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова «совсем». Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой «чур, я в домике», точнее «математика изучает абстрактные понятия», есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его «математическое множество зарплаты». Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: «к другим это применять можно, ко мне — низьзя!». Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами — на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально…

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует — всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова — значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов — у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких «мыслимое как не единое целое» или «не мыслимое как единое целое».

воскресенье, 18 марта 2018 г.

Сумма цифр числа — это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу «Сумма цифр числа». Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры — это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: «Найти сумму графических символов, изображающих любое число». Математики эту задачу решить не могут, а вот шаманы — элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки — это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот «курсы кройки и шитья» от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых — нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Открывает дверь и говорит:

Ой! А это разве не женский туалет?
— Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский… Нимб сверху и стрелочка вниз — это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А — это не «минус четыре градуса» или «один а». Это «какающий человек» или число «двадцать шесть» в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Начальная школа подходит к концу, скоро ребёнок шагнёт в углубленный мир математики. Но уже в этот период школьник сталкивается с трудностями науки. Выполняя простое задание, ребёнок путается, теряется, что в результате приводит к отрицательной отметке за выполненную работу. Чтобы избежать подобных неприятностей, нужно при решении примеров, уметь ориентироваться в порядке, по которому нужно решать пример. Не верно распределив действия, ребёнок не правильно выполняет задание. В статье раскрываются основные правила решения примеров, содержащих в себе весь спектр математических вычислений, включая скобки. Порядок действий в математике 4 класс правила и примеры.

Перед выполнением задания попросите своё чадо пронумеровать действия, которые он собирается выполнить. Если возникли затруднения – помогите.

Некоторые правила, которые необходимо соблюдать при решении примеров без скобок:

Если в задании необходимо выполнить ряд действий, нужно сначала выполнить деление или умножение, затем . Все действия выполняются по ходу письма. В противном случае, результат решения будет не верным.

Если в примере требуется выполнить , выполняем по порядку, слева направо.

27-5+15=37 (при решении примера руководствуемся правилом. Сначала выполняем вычитание, затем – сложение).

Научите ребёнка всегда планировать и нумеровать выполняемые действия.

Ответы на каждое решённое действие записываются над примером. Так ребёнку гораздо легче будет ориентироваться в действиях.

Рассмотрим ещё один вариант, где необходимо распределить действия по порядку:

Как видим, при решении соблюдено правило, сначала ищем произведение, после — разность.

Это простые примеры, при решении которых, необходима внимательность. Многие дети впадают в ступор при виде задания, в котором присутствует не только умножение и деление, но и скобки. У школьника, не знающего порядок выполнения действий, возникают вопросы, которые мешают выполнить задание.

Как говорилось в правиле, сначала найдём произведение или частное, а потом всё остальное. Но тут же есть скобки! Как поступить в этом случае?

Решение примеров со скобками

Разберём конкретный пример:

  • При выполнении данного задания, сначала найдём значение выражения, заключённого в скобки.
  • Начать следует с умножения, далее – сложение.
  • После того, как выражение в скобках решено, приступаем к действиям вне их.
  • По правилам порядка действий, следующим шагом будет умножение.
  • Завершающим этапом станет .

Как видим на наглядном примере, все действия пронумерованы. Для закрепления темы предложите ребёнку решить самостоятельно несколько примеров:

Порядок, по которому следует вычислять значение выражения уже расставлен. Ребёнку останется только выполнить непосредственно решение.

Усложним задачу. Пусть ребёнок найдёт значение выражений самостоятельно.

7*3-5*4+(20-19) 14+2*3-(13-9)
17+2*5+(28-2) 5*3+15-(2-1*2)
24-3*2-(56-4*3) 14+12-3*(21-7)

Приучите ребёнка решать все задания в черновом варианте. В таком случае, у школьника будет возможность исправить не верное решение или помарки. В рабочей тетради исправления не допустимы. Выполняя самостоятельно задания, дети видят свои ошибки.

Родители, в свою очередь, должны обратить внимание на ошибки, помочь ребёнку разобраться и исправить их. Не стоит нагружать мозг школьника большими объёмами заданий. Такими действиями вы отобьёте стремление ребёнка к знаниям. Во всём должно быть чувство меры.

Делайте перерыв. Ребёнок должен отвлекаться и отдыхать от занятий. Главное помнить, что не все обладают математическим складом ума. Может из вашего ребёнка вырастет знаменитый философ.

Правила порядка выполнения действий в сложных выражениях изучаются во 2 классе, но практически некоторые из них дети используют еще в 1 классе.

Сначала рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами производят либо только сложение и вычитание, либо только умножение и деление. Необходимость введения выражений, содержащих два и более арифметических действий одной ступени, возникает при знакомстве учеников с вычислительными приемами сложения и вычитания в пределах 10, а именно:

Аналогично: 6 — 1 — 1, 6 — 2 — 1, 6 — 2 — 2.

Так как для нахождения значений этих выражений школьники обращаются к предметным действиям, которые выполняются в определенном порядке, то они легко усваивают тот факт, что арифметические действия (сложение и вычитание), которые имеют место в выражениях, выполняются последовательно слева направо.

С числовыми выражениями, содержащими действия сложения и вычитания, а также скобки, учащиеся впервые встречаются в теме «Сложение и вычитание в пределах 10». Когда дети встречаются с такими выражениями в 1 классе, например: 7 — 2 + 4, 9 — 3 — 1 , 4 +3 — 2; во 2 классе, например: 70 — 36 +10, 80 — 10 — 15, 32+18 — 17; 4*10:5, 60:10*3, 36:9*3, учитель показывает, как читают и записывают такие выражения и как находят их значение (например, 4*10:5 читают: 4 умножить на 10 и полученный результат разделить на 5). К моменту изучения во 2 классе темы «Порядок действий» учащиеся умеют находить значения выражений этого вида. Цель работы на данном этапе — опираясь практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило. Учащиеся самостоятельно решают подобранные учителем примеры и объясняют, в каком порядке выполняли; действия в каждом примере. Затем формулируют сами или читают по учебнику вывод: если в выражении без скобок указаны только действия сложения и вычитания (или только действия умножения и деления), то их выполняют в том порядке, в каком они записаны (т.е. слева направо).

Несмотря на то, что в выражениях вида а+в+с, а+(в+с) и (а+в)+с наличие скобок не влияет на порядок выполнения действий в силу сочетательного закона сложения, на этом этапе учащихся целесообразнее сориентировать на то, что сначала выполняется действие в скобках. Это связано с тем, что для выражений вида а — (в+с) и а — (в — с) такое обобщение неприемлемо и учащимся на начальном этапе довольно трудно будет сориентироваться в назначении скобок для различных числовых выражений. Использование скобок в числовых выражениях, содержащих действия сложения и вычитания, в дальнейшем получает свое развитие, которое связано с изучением таких правил, как прибавление суммы к числу, числа к сумме, вычитание суммы из числа и числа из суммы. Но при первом знакомстве со скобками важно нацелить учащихся на то, что сначала выполняется действие в скобках.

Учитель обращает внимание детей на то, как важно соблюдать это правило при вычислениях, иначе можно получить неверное равенство. Например, учащиеся объясняют, каким образом, получены значения выражений: 70 — 36 +10=24, 60:10 — 3 =2, почему они неверны, какие значения в действительности имеют эти выражения. Аналогично изучают порядок действий в выражениях со скобками вида: 65 — (26 — 14), 50:(30 — 20), 90:(2 * 5). С такими выражениями учащиеся также знакомы и умеют их читать, записывать и вычислять их значение. Объяснив порядок выполнения действий в нескольких таких выражениях, дети формулируют вывод: в выражениях со скобками первым выполняется действие над числами, записанными в скобках. Рассматривая эти выражения нетрудно показать, что действия в них выполняются не в том порядке, в каком записаны; чтобы показать другой порядок их выполнения, и использованы скобки.

Следующим вводится правило порядка выполнения действий в выражениях без скобок, когда в них содержатся действия первой и второй ступени. Поскольку правила порядка действий приняты по договоренности, учитель сообщает их детям или же учащиеся знакомятся с ними по учебнику. Чтобы учащиеся усвоили введенные правила, наряду с тренировочными упражнениями включают решение примеров с пояснением порядка выполнения их действий. Эффективны также упражнения в объяснении ошибок на порядок выполнения действий. Например, из заданных пар примеров предлагается выписать только те, где вычисления выполнены по правилам порядка действий:

После объяснения ошибок можно дать задание: используя скобки, изменить порядок действий так, чтобы выражение имело заданное значение. Например, чтобы первое из приведенных выражений имело значение, равное 10, надо записать его так: (20+30):5=10.

Особенно полезны упражнения на вычисление значения выражения, когда ученику приходится применять все изученные правила. Например, на доске или в тетрадях записывается выражение 36:6+3*2. Учащиеся вычисляют его значение. Затем по заданию учителя дети изменяют с помощью скобок порядок действий в выражении:

  • 36:6+3-2
  • 36:(6+3-2)
  • 36:(6+3)-2
  • (36:6+3)-2

Интересным, но более трудным является обратное упражнение: расставить скобки так, чтобы выражение имело заданное значение:

  • 72-24:6+2=66
  • 72-24:6+2=6
  • 72-24:6+2=10
  • 72-24:6+2=69

Также интересными являются упражнения следующего вида:

  • 1. Расставьте скобки так, чтобы равенства были верными:
  • 25-17:4=2 3*6-4=6
  • 24:8-2=4
  • 2. Поставьте вместо звездочек знаки «+» или «-» так, чтобы получились верные равенства:
  • 38*3*7=34
  • 38*3*7=28
  • 38*3*7=42
  • 38*3*7=48
  • 3. Поставьте вместо звездочек знаки арифметических действий так, чтобы равенства были верными:
  • 12*6*2=4
  • 12*6*2=70
  • 12*6*2=24
  • 12*6*2=9
  • 12*6*2=0

Выполняя такие упражнения, учащиеся убеждаются в том, что значение выражения может измениться, если изменяется порядок действий.

Для усвоения правил порядка действий необходимо в 3 и 4 классах включать все более усложняющиеся выражения, при вычислении значений которых ученик применял бы каждый раз не одно, а два или три правила порядка выполнения действий, например:

  • 90*8- (240+170)+190,
  • 469148-148*9+(30 100 — 26909).

При этом числа следует подбирать так, чтобы они допускали выполнение действий в любом порядке, что создает условия для сознательного применения изученных правил.

На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления — это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 — 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 — 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 — (20 — 7) +15

32 + 9 * (19 — 16)

Будем действовать по правилу. В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие — умножение, второе — деление, третье — вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

37 + 9 — 6: 2 * 3 =

18: (11 — 5) + 47=

7 * 3 — (16 + 4)=

Рассуждаем так.

37 + 9 — 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие — деление, второе — умножение. Третье действие должно быть сложение, четвертое — вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — деление, третье — сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — умножение, третье — вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого — вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Festival.1september.ru ().
  2. Sosnovoborsk-soobchestva.ru ().
  3. Openclass.ru ().

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

Табличка на двери

Сначала умножение или сложение если нет скобок. Примеры со скобками, урок с тренажерами

Порядок выполнения действий — Математика 3 класс (Моро)

Краткое описание:

В жизни вы постоянно совершаете различные действия: встаете, умываетесь, делаете зарядку, завтракаете, идете в школу. Как вы думаете, можно ли поменять этот порядок действий? Например, позавтракать, а потом умыться. Наверное, можно. Может быть, будет не очень удобно завтракать неумытому, но ничего страшного из-за этого не случится. А в математике можно ли менять порядок действий по своему усмотрению? Нет, математика – точная наука, поэтому даже малейшие изменения в порядке действий приведут к тому, что ответ числового выражения станет неверным. Во втором классе вы уже познакомились с некоторыми правилами порядка действий. Так, вы, наверное, помните, что руководят порядком в выполнении действий скобки. Они показывают, что действия нужно выполнить первым. Какие существуют другие правила порядка действий? Отличается ли порядок действий в выражениях со скобками и без скобок? На эти вопросы вам предстоит найти ответы в учебнике математики 3 класса при изучении темы «Порядок выполнения действий». Вы должны обязательно потренироваться в применении изученных правил, а если понадобиться, то найти и исправить ошибки в установлении порядка действий в числовых выражениях. Помните, пожалуйста, что порядок важен в любом деле, но в математике он имеет особое значение!

Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

Yandex.RTB R-A-339285-1

В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

Определение 1

В случае выражений без скобок порядок действий определяется однозначно:

  1. Все действия выполняются слева направо.
  2. В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

Пример 1

Условие: вычислите, сколько будет 7 − 3 + 6 .

Решение

В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

7 − 3 + 6 = 4 + 6 = 10

Ответ: 7 − 3 + 6 = 10 .

Пример 2

Условие: в каком порядке нужно выполнять вычисления в выражении 6: 2 · 8: 3 ?

Решение

Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Пример 3

Условие: подсчитайте, сколько будет 17 − 5 · 6: 3 − 2 + 4: 2 .

Решение

Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30 , потом 30 разделить на 3 и получить 10 . После этого делим 4 на 2 , это 2 . Подставим найденные значения в исходное выражение:

17 − 5 · 6: 3 − 2 + 4: 2 = 17 − 10 − 2 + 2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

Ответ: 17 − 5 · 6: 3 − 2 + 4: 2 = 7 .

Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

Определение 2

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Порядок вычислений в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Определение 3

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Пример 4

Условие: вычислите, сколько будет 5 + (7 − 2 · 3) · (6 − 4) : 2 .

Решение

В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7 − 2 · 3 . Здесь нам надо умножить 2 на 3 и вычесть результат из 7:

7 − 2 · 3 = 7 − 6 = 1

Считаем результат во вторых скобках. Там у нас всего одно действие: 6 − 4 = 2 .

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5 + (7 − 2 · 3) · (6 − 4) : 2 = 5 + 1 · 2: 2

Начнем с умножения и деления, потом выполним вычитание и получим:

5 + 1 · 2: 2 = 5 + 2: 2 = 5 + 1 = 6

На этом вычисления можно закончить.

Ответ: 5 + (7 − 2 · 3) · (6 − 4) : 2 = 6 .

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

Пример 5

Условие: вычислите, сколько будет 4 + (3 + 1 + 4 · (2 + 3)) .

Решение

У нас есть скобки в скобках. Начинаем с 3 + 1 + 4 · (2 + 3) , а именно с 2 + 3 . Это будет 5 . Значение надо будет подставить в выражение и подсчитать, что 3 + 1 + 4 · 5 . Мы помним, что сначала надо умножить, а потом сложить: 3 + 1 + 4 · 5 = 3 + 1 + 20 = 24 . Подставив найденные значения в исходное выражение, вычислим ответ: 4 + 24 = 28 .

Ответ: 4 + (3 + 1 + 4 · (2 + 3)) = 28 .

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Допустим, нам надо найти, сколько будет (4 + (4 + (4 − 6: 2)) − 1) − 1 . Начинаем с выражения во внутренних скобках. Поскольку 4 − 6: 2 = 4 − 3 = 1 , исходное выражение можно записать как (4 + (4 + 1) − 1) − 1 . Снова обращаемся к внутренним скобкам: 4 + 1 = 5 . Мы пришли к выражению (4 + 5 − 1) − 1 . Считаем 4 + 5 − 1 = 8 и в итоге получаем разность 8 — 1 , результатом которой будет 7 .

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Пример 6

Условие: найдите, сколько будет (3 + 1) · 2 + 6 2: 3 − 7 .

Решение

У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 6 2 = 36 . Теперь подставим результат в выражение, после чего оно примет вид (3 + 1) · 2 + 36: 3 − 7 .

(3 + 1) · 2 + 36: 3 − 7 = 4 · 2 + 36: 3 − 7 = 8 + 12 − 7 = 13

Ответ: (3 + 1) · 2 + 6 2: 3 − 7 = 13 .

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тема урока: « Порядок выполнения действий в выражениях без скобок и со скобками».

Цель урока : создать условия для закрепления умений применять знания о порядке выполнения действий в выражениях без скобок и со скобками в различных ситуациях, умений решать задачи выражением.

Задачи урока.

Образовательные:

Закрепить знания учащихся о правилах выполнения действий в выражениях без скобок и со скобками; формировать у них умение пользоваться этими правилами при вычислении конкретных выражений; совершенствовать вычислительные навыки; повторить табличные случаи умножения и деления;

Развивающие:

Развивать вычислительные навыки, логическое мышление, внимание, память, познавательные способности учащихся,

коммуникативные навыки;

Воспитательные:

Воспитывать толерантное отношение друг к другу, взаимное сотрудничество,

культуру поведения на уроке, аккуратность, самостоятельность, воспитывать интерес к занятиям математикой.

Формируемые УУД:

Регулятивные УУД:

работать по предложенному плану, инструкции;

выдвигать свои гипотезы на основе учебного материала;

осуществлять самоконтроль.

Познавательные УУД:

знать правила порядка выполнения действий:

уметь разъяснить их содержание;

понимать правило порядка выполнения действий;

находить значения выражений согласно правилам порядка выполнения;

действий, используя для этого текстовые задачи;

записывать решение задачи выражением;

применять правила порядка выполнения действий;

уметь применять полученные знания при выполнении контрольной работы.

Коммуникативные УУД:

слушать и понимать речь других;

выражать свои мысли с достаточной полнотой и точностью;

допускать возможность различных точек зрения, стремиться понимать позицию собеседника;

работать в команде разного наполнения (паре, малой группе, целым классом), участвовать в обсуждениях, работая в паре;

Личностные УУД:

устанавливать связь между целью деятельности и её результатом;

определять общие для всех правила поведения;

выражать способность к самооценке на основе критерия успешности учебной деятельности.

Планируемый результат:

Предметные:

Знать правила порядка выполнения действий.

Уметь разъяснить их содержание.

Уметь решать задачи с помощью выражений.

Личностные:
Уметь проводить самооценку на основе критерия успешности учебной деятельности.

Метапредметные:

Уметь определять и формулировать цель на уроке с помощью учителя; проговаривать последовательность действий на уроке; работать по коллективно составленному плану; оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки; планировать своё действие в соответствии с поставленной задачей; вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок; высказывать своё предположение(Регулятивные УУД ).

Уметь оформлять свои мысли в устной форме; слушать и понимать речь других; совместно договариваться о правилах поведения и общения в школе и следовать им (Коммуникативные УУД ).

Уметь ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя; добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке (Познавательные УУД ).

Ход урока

1. Организационный момент.

Чтоб урок наш стал светлее,

Мы поделимся добром.

Вы ладони протяните,

В них любовь свою вложите,

И друг другу улыбнитесь.

Займите свои рабочие места.

Открыли тетради, записали число и классная работа.

2. Актуализация знаний.

На уроке нам с вами предстоит подробно рассмотреть порядок выполнения арифметических действий в выражениях без скобок и со скобками.

Устный счёт.

Игра «Найди правильный ответ».

(У каждого ученика лист с числами)

Я читаю задания, а вы, выполнив в уме действия, должны полученный результат, т. е. ответ, зачеркнуть крестиком.

    Я задумала число, из него вычла 80, получила 18. Какое число я задумала? (98)

    Я задумала число, к нему прибавила 12, получила 70. Какое число я задумала? (58)

    Первое слагаемое 90, второе слагаемое 12. Найдите сумму. (102)

Соедините полученные результаты.

Какую геометрическую фигуру вы получили? (Треугольник)

Расскажите, что вы знаете о данной геометрической фигуре. (Имеет 3 стороны, 3 вершины, 3 угла)

Продолжаем работать по карточке.

    Найдите разность чисел 100 и 22. (78)

    Уменьшаемое 99, вычитаемое 19. Найдите разность. (80).

    Возьмите число 25 4 раза. (100)

Начертите внутри треугольника еще 1 треугольник, соединяя полученные результаты.

Сколько треугольников получилось? (5)

3. Работа над темой урока. Наблюдение за изменением значения выражения от порядка выполнения арифметических действий

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .

Порядок выполнения арифметических действий в выражениях без скобок

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления – это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

Порядок выполнения арифметических действий в выражениях со скобками

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 — 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 — 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Правило выполнения арифметических действий в выражениях без скобок и со скобками

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

4. Закрепление Выполнение тренировочных заданий на изученное правило

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 — (20 — 7) +15

32 + 9 * (19 — 16)

Будем действовать по правилу. В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие – умножение, второе – деление, третье – вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

37 + 9 — 6: 2 * 3 =

18: (11 — 5) + 47=

7 * 3 — (16 + 4)=

Рассуждаем так.

37 + 9 — 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие – деление, второе – умножение. Третье действие должно быть сложение, четвертое – вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – деление, третье – сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – умножение, третье – вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого – вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

5. Подведение итогов.

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками. В ходе выполнения заданий определяли, зависит ли значение выражений от порядка выполнения арифметических действий, узнали, отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренировались в применении изученного правила, искали и исправляли ошибки, допущенные при определении порядка действий.

Начальная школа подходит к концу, скоро ребёнок шагнёт в углубленный мир математики. Но уже в этот период школьник сталкивается с трудностями науки. Выполняя простое задание, ребёнок путается, теряется, что в результате приводит к отрицательной отметке за выполненную работу. Чтобы избежать подобных неприятностей, нужно при решении примеров, уметь ориентироваться в порядке, по которому нужно решать пример. Не верно распределив действия, ребёнок не правильно выполняет задание. В статье раскрываются основные правила решения примеров, содержащих в себе весь спектр математических вычислений, включая скобки. Порядок действий в математике 4 класс правила и примеры.

Перед выполнением задания попросите своё чадо пронумеровать действия, которые он собирается выполнить. Если возникли затруднения – помогите.

Некоторые правила, которые необходимо соблюдать при решении примеров без скобок:

Если в задании необходимо выполнить ряд действий, нужно сначала выполнить деление или умножение, затем . Все действия выполняются по ходу письма. В противном случае, результат решения будет не верным.

Если в примере требуется выполнить , выполняем по порядку, слева направо.

27-5+15=37 (при решении примера руководствуемся правилом. Сначала выполняем вычитание, затем – сложение).

Научите ребёнка всегда планировать и нумеровать выполняемые действия.

Ответы на каждое решённое действие записываются над примером. Так ребёнку гораздо легче будет ориентироваться в действиях.

Рассмотрим ещё один вариант, где необходимо распределить действия по порядку:

Как видим, при решении соблюдено правило, сначала ищем произведение, после — разность.

Это простые примеры, при решении которых, необходима внимательность. Многие дети впадают в ступор при виде задания, в котором присутствует не только умножение и деление, но и скобки. У школьника, не знающего порядок выполнения действий, возникают вопросы, которые мешают выполнить задание.

Как говорилось в правиле, сначала найдём произведение или частное, а потом всё остальное. Но тут же есть скобки! Как поступить в этом случае?

Решение примеров со скобками

Разберём конкретный пример:

  • При выполнении данного задания, сначала найдём значение выражения, заключённого в скобки.
  • Начать следует с умножения, далее – сложение.
  • После того, как выражение в скобках решено, приступаем к действиям вне их.
  • По правилам порядка действий, следующим шагом будет умножение.
  • Завершающим этапом станет .

Как видим на наглядном примере, все действия пронумерованы. Для закрепления темы предложите ребёнку решить самостоятельно несколько примеров:

Порядок, по которому следует вычислять значение выражения уже расставлен. Ребёнку останется только выполнить непосредственно решение.

Усложним задачу. Пусть ребёнок найдёт значение выражений самостоятельно.

7*3-5*4+(20-19) 14+2*3-(13-9)
17+2*5+(28-2) 5*3+15-(2-1*2)
24-3*2-(56-4*3) 14+12-3*(21-7)

Приучите ребёнка решать все задания в черновом варианте. В таком случае, у школьника будет возможность исправить не верное решение или помарки. В рабочей тетради исправления не допустимы. Выполняя самостоятельно задания, дети видят свои ошибки.

Родители, в свою очередь, должны обратить внимание на ошибки, помочь ребёнку разобраться и исправить их. Не стоит нагружать мозг школьника большими объёмами заданий. Такими действиями вы отобьёте стремление ребёнка к знаниям. Во всём должно быть чувство меры.

Делайте перерыв. Ребёнок должен отвлекаться и отдыхать от занятий. Главное помнить, что не все обладают математическим складом ума. Может из вашего ребёнка вырастет знаменитый философ.

И деление чисел — действиями второй ступени.
Порядок выполнения действий при нахождении значений выражений определяется следующими правилами:

1. Если в выражении нет скобок и оно содержит действия только одной ступени, то их выполняют по порядку слева направо.
2. Если выражение содержит действия первой и второй ступени и в нем нет скобок, то сначала выполняют действия второй ступени, потом — действия первой ступени.
3. Если в выражении есть скобки, то сначала выполняют действия в скобках (учитывая при этом правила 1 и 2).

Пример 1. Найдем значение выражения

а) х + 20 = 37;
б) у + 37 = 20;
в) а — 37 = 20;
г) 20 — m = 37;
д) 37 — с = 20;
е) 20 + k = 0.

636. При вычитании каких натуральных чисел может получиться 12? Сколько пар таких чисел? Ответьте на те же вопросы для умножения и для деления.

637. Даны три числа: первое — трехзначное, второе — значение частного от деления шестизначного числа на десять, а третье — 5921. Можно ли указать наибольшее и наименьшее из этих чисел?

638. Упростите выражение:

а) 2а + 612 + 1а + 324;
б) 12у + 29у + 781 + 219;

639. Решите уравнение:

а) 8х — 7х + 10 = 12;
б) 13у + 15у- 24 = 60;
в) Зz — 2z + 15 = 32;
г) 6t + 5t — 33 = 0;
д) (х + 59) : 42 = 86;
е) 528: k — 24 = 64;
ж) р: 38 — 76 = 38;
з) 43m- 215 = 473;
и) 89n + 68 = 9057;
к) 5905 — 21 v = 316;
л) 34s — 68 = 68;
м) 54b — 28 = 26.

640. Животноводческая ферма обеспечивает привес 750 г на одно животное в сутки. Какой привес получает комплекс за 30 дней на 800 животных?

641. В двух больших и пяти маленьких бидонах 130 л молока. Сколько молока входит в маленький бидон, если его вместимость в четыре раза меньше вместимости большего?

642. Собака увидела хозяина, когда была от него на расстоянии 450 м, и побежала к нему со скоростью 15 м/с. Какое расстояние между хозяином и собакой будет через 4 с; через 10 с; через t с?

643. Решите с помощью уравнения задачу:

1) У Михаила в 2 раза больше орехов, чем у Николая, а у Пети в 3 раза больше, чем у Николая. Сколько орехов у каждого, если у всех вместе 72 ореха?

2) Три девочки собрали на берегу моря 35 ракушек. Галя нашла в 4 раза больше, чем Маша, а Лена — в 2 раза больше, чем Маша. Сколько ракушек нашла каждая девочка?

644. Составьте программу вычисления выражения

8217 + 2138 (6906 — 6841) : 5 — 7064.

Запишите эту программу в виде схемы. Найдите значение выражения.

645. Напишите выражение по следующей программе вычисления:

1. Умножить 271 на 49.
2. Разделить 1001 на 13.
3. Результат выполнения команды 2 умножить на 24.
4. Сложить результаты выполнения команд 1 и 3.

Найдите значение этого выражения.

646. Напишите выражение по схеме (рис. 60). Составьте программу его вычисления и найдите его значение.

647. Решите уравнение:

а) Зх + bх + 96 = 1568;
б) 357z — 1492 — 1843 — 11 469;
в) 2у + 7у + 78 = 1581;
г) 256m — 147m — 1871 — 63 747;
д) 88 880: 110 + х = 809;
е) 6871 + р: 121 = 7000;
ж) 3810 + 1206: у = 3877;
з) к + 12 705: 121 = 105.

648. Найдите частное:

а) 1 989 680: 187; в) 9 018 009: 1001;
б) 572 163: 709; г) 533 368 000: 83 600.

649. Теплоход 3 ч шел по озеру со скоростью 23 км/ч, а потом 4 ч по реке. Сколько километров прошел теплоход за эти 7 ч, если по реке он шел на 3 км/ч быстрее, чем по озеру?

650. Сейчас расстояние между собакой и кошкой 30 м. Через сколько секунд собака догонит кошку, если скорость собаки 10 м/с, а кошки — 7 м/с?

651. Найдите в таблице (рис. 61) все числа по порядку от 2 до 50. Это упражнение полезно выполнить несколько раз; можно соревноваться с товарищем: кто быстрее отыщет все числа?

Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений

Планы конспектов уроков по математике 5 класса скачать , учебники и книги бесплатно, разработки уроков по математике онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

«порядок выполнения действий в выражениях со скобками и без скобок»

«ПОРЯДОК ВЫПОЛНЕНИЯ ДЕЙСТВИЙ
В ВЫРАЖЕНИЯХ СО СКОБКАМИ И БЕЗ СКОБОК»

(с. 44–45)

Цели: познакомить с правилами о порядке выполнения арифметических действий в выражениях со скобками и без скобок; научить применять эти правила при нахождении значений выражений; закреплять навыки решения задач и уравнений, а также знания о геометрических фигурах.

Ход урока

I. Организационный момент.

II. Устный счёт.

1. Решите «круговые примеры»:

45 – 8 8 + 6 17 – 9

14 + 30 44 + 1 37 – 20

2. Арифметический диктант:

8 ·3 2 · 9 6 · 3

2 · 7 24 : 3 27 : 9

12 : 2 14 : 7 12 : 3

III. Работа над новым материалом.

Ученики рассматривают выражения, данные в учебнике на с. 44 вверху, называют, какие действия они содержат. Затем дети объясняют, почему действия в парах примеров одинаковые, а результаты получились разные.

Учащиеся. Действия в примерах были одинаковые, но выполнялись они в разном порядке. Порядок действий зависел от скобок.

После этого учащиеся читают вводный текст и правило в красной рамочке.

Выполнять действия в следующем порядке:

1) действия, записанные в скобках;

2) умножение и деление;

3) сложение и вычитание.

Далее под руководством учителя дети объясняют порядок действий в выражениях (внизу):

Выражение 100 – 21 : 3 содержит вычитание и деление.

Значит, сначала надо выполнить деление, а затем вычитание.

21 : 3 = 7, 100 – 7 = 93.

Выражение 60 + 9 · 3 содержит сложение и умножение.

Значит, сначала выполняем умножение, а потом сложение:

9 · 3 = 27, 27 + 60 = 87.

Выражение 30 + 6 · (13 – 9) содержит действия: сложение, умножение и вычитание. В нем есть скобки, значит, первым действием выполняем действие в скобках, затем умножение, а потом сложение.

13 – 9 = 4, 6 · 4 = 24, 30 + 24 = 54.

Выражение 18 : 2 – 2 · 3 + 12 : 3 содержит деление, вычитание, умножение и сложение. В нем нет скобок, значит, сначала выполняются деление и умножение слева направо, а затем вычитание и сложение по порядку слева направо.

Для закрепления учащимися под руководством учителя выполняется задание № 1 на с. 45. В каждом случае дети называют, какие действия содержит выражение, в каком порядке их надо выполнять, и вычисляют значение выражения. Запись выполняется по образцу учебника.

Ф и з к у л ь т м и н у т к а

Солнце глянуло в кроватку…

Раз, два, три, четыре, пять.

Все мы делаем зарядку,

Надо нам присесть и встать.

Руки вытянуть пошире,

Раз, два, три, четыре, пять.

Наклониться – три, четыре,

И на месте поскакать.

На носок, потом на пятку.

Все мы делаем зарядку.

IV. Работа над пройденным материалом.

1. Решение задач. Задания № 2 и № 4 дети решают самостоятельно с последующей проверкой.

Задание № 3 разобрать с комментированием. После записи условия проводится беседа.

Всего – 48 с.

Прочитала – 3 д. по 9 с.

Осталось – ?

Учитель. Задача простая или составная?

Учащиеся. Составная.

Учитель. Что надо еще найти, прежде чем ответить на главный вопрос задачи?

Учащиеся. Мы должны узнать, сколько страниц прочитала девочка за 3 дня.

Учитель. Как это можно найти?

Учащиеся. Надо 9 · 3.

Учитель. После этого можно узнать, сколько страниц ей осталось прочитать?

Учащиеся. Да. Надо из 48 вычесть полученный результат.

Далее дети оформляют решение и ответ сами.

1) 9 · 3 = 27 (с.) – прочитала

2) 48 – 27 = 21 (с.)

О т в е т: 21 страница осталась.

Аналогично учитель с учащимися разбирает задание № 5.

2. Решение уравнений. Перед выполнением задания № 7 дети должны вспомнить и рассказать правила, как найти неизвестные слагаемое, уменьшаемое, вычитаемое.

1) Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

2) Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

3) Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

После этого выписывают уравнения по заданию и самостоятельно решают.

3. Работа над геометрическим материалом.

Задание № 6 можно оформить как задачу в тетради. Для этого дети измеряют длину данных отрезков, перечерчивают их в тетрадь, выразив их длину в миллиметрах, вспоминают правило:

Чтобы узнать, на сколько одно число больше или меньше другого, надо из большего вычесть меньшее число.

Выполняя задание № 8, дети должны выписать название треугольников: АВК, ВСД, ВДК, ЕОМ, РЕМ, МОТ.

Названия четырехугольников: АСДК, АВДК, ВСДК, РЕОТ, МЕОТ, РЕОМ.

V. Итоги урока.

Учитель. Ребята, что нового мы сегодня узнали на уроке?

Дети. Мы учились решать выражения со скобками и без скобок.

Учитель. Что повторяли сегодня?

Дети. Мы решали примеры и задачи, уравнения, чертили отрезки и выписывали названия треугольников и четырёхугольников.

Домашнее задание: с. 45, № 6.

Порядок выполнения арифметических действий в числовых выражениях без скобок в 2 арифметических действия

— У. Ребята, именно такой работы я и ждала от вас, молодцы: вы были активны,

внимательны, сообразительны. Оцените свою работу смайликами. (у каждого на парте)

О. (ученики самостоятельно оценивают себя)

3. Самоопределение к деятельности.

-У. Ребята, посмотрите внимательно на доску, на выражения, которые записаны у нас на

карточках, какое из них лишнее? Почему?

2+8, 12 – 3, 8+6, 25-5, 40-20, 56-42, 10+ 2*5, 2*5 (слайд 5)

О. (10+2*5, потому что два действия)

— У. Значит, мы сегодня поговорим о выражениях во сколько действий?

О. (в 2 )

— Сегодня к нам на урок пришел герой , который очень мечтал стать умным, узнаете кто?

Папа Карло удивлён:

Стукнул по полену он –

И сучок стал с носом длинным…

Так родился … (Буратино)(слайд 6)

О. (буратино)

— У. (демонстрирует Буратино). Он тоже хочет научиться правильно считать, но у него

возникли трудности с решением примеров в 2 действия. Поможем ему?

О. (да)

-У. Он решил примеры , но учитель ему поставил двойку. Давайте выясним, почему?

О. (да)

Примеры на доске:

10-2*4=32, 8+2*3=30

-У. правильно ли посчитал примеры Буратино?(проблемная ситуация)

О. (нет, в первом -2, 14)

— У. А почему, у него неправильно получилось, что он сделал неправильно)

О. ( не соблюдал порядок действий)

— У. Для чего нам нужно знать порядок действий?

О. (Правильно выполнять вычисления в длинных выражениях)

— У.Какое же правило мы должны напомнить ему о порядке действий в таких примерах?

И которое забыл наш герой.

О.( если в примерах есть умножение, то его делаем первым, а потом по порядку )

— У. Молодцы, сегодня мы и напомним нашему герою, как решать примеры в два

действия, где есть умножение и нет скобок.

Физминутка.

Буратино потянулся, раз нагнулся, два- нагнулся .

Руки в стороны развел – видно ключик не нашёл.

Чтобы ключик нам достать надо на носочки встать.

4. Работа по теме. Отработка навыка вычислений выражений в два действия.

1) Работа у доски — решение примеров из учебника (………).

— У. Расскажем и покажем, как надо считать примеры.

По одному к доске.

(за каждый пример, жетон)………………………………………………………

— У. Думаю теперь нашему герою будет все понятно. Напомним еще раз, как решать такие

примеры…

О. (…..)

2) Работа в парах.( групповая работа) (Слайд 7,)

Даны карточки с заданием.

2, 5,4 , *, +,14 , =; 7,2,- 4, *,10, =; 13, -,3, *, 2, 7, =; 15, +, 3,*, 2, =, 21.

Конспект урока математики на тему » Порядок выполнения действий в выражениях» 3 класс

2.Актуализация знаний.

— Что вы ждёте от этого урока?

 

— Правильно, новые знания ждут нас сегодня. Ведь урок у нас будет необычный. У нас с вами урок – исследование. Что такое исследование?

— Правильно, это что-то изучать, выводить новые знания.

А чтобы исследование прошло результативно, вам понадобится умение наблюдать, сравнивать, обобщать и делать выводы. Ведь нам нужно зажечь сегодня новую звезду знаний.

Ну, а чтобы открыть что-то новое, нам необходимо повторить, что мы уже с вами знаем.

 

— Что мы изучали на прошлом уроке?

У вас на партах лежат математические цепочки.

 

Первый вариант —  бумага красного цвета.

 

Второй вариант —  бумага зелёного цвета.

 

Вам нужно  решить математические цепочки.

 

 

Проверка на слайде.

Взаимопроверка.

Кому было просто, поднимите руки.

У кого были затруднения? Поднимите руки

Провести разминку для ума.

Повторить таблицу умножения и деления.

Порешать задачи.

Узнать что-нибудь новенькое.

 

 

 

 

 

 

— Деление круглых чисел.

 

 

— Работа по вариантам.

 

 

 

 

Познавательные УУД:

— уметь перерабатывать полученную информацию

Регулятивные УУД:

— уметь самостоятельно двигаться по заданному плану;

Коммуникативные УУД:

— уметь высказывать суждения с использованием математических терминов и понятий, формулировать в ходе выполнения задания вопросы и ответы, обосновывать этапы решения учебной задачи;

— уметь слушать и понимать речь других;

— участвовать в беседе на уроке.

3.Постановка учебной задачи

 

А вот Маше и Мише была предложена такая цепочка:

24 + 40 : 8 – 4=

 

Маша её решила так:

24 + 40 : 8 – 4= 25

 

— Как она рассуждала? Правильно?

 

А Миша решил вот так:

24 + 40 : 8 – 4= 4

 

— Как он рассуждал? Правильно?

— Что вас удивило? Тогда почему ответы у них разные?

Они считали в разном порядке, не договорились, в каком порядке будут считать.

 

— От чего зависит результат вычисления?

 

От порядка.

— Что вы видите в этих выражениях? Числа, знаки.

— Как в математике называют знаки? Действия.

— О каком порядке не договорились ребята?

— Что мы будем исследовать?

 

Тема урока на доске

— Для чего нам нужно знать порядок действий?

Правильно выполнять вычисления в длинных выражениях.

 

18 – 9 + 2 = 

18 – ( 9 + 2) = 

18 : 9 * 2 =

18 : ( 9 * 2) =

18 : 9 + 2 =

18 – 9 * 2 =

 

— Прочитайте выражения. Сравните их.

— Чем похожи?

— Чем отличаются?

 

 

Правило 1.

Прочитайте правило на слайде.

 

В выражениях без скобок, содержащих только сложение и вычитание или умножение и деление, действия выполняются в том порядке, как они записаны: слева направо.

 

О каких действиях здесь говорится? +, — или :, *

Есть ли скобки?

 

Как будем считать?

 

Из данных выражений найдите только те, которые соответствуют правилу 1. Запишите их в тетрадь.

Вычислите значения выражений.

 

Проверка.

18 – 9 + 2 =

18 : 9 * 2 =

 

Правило 2.

 

Прочитайте правило на слайде.

В выражениях без скобок сначала выполняются по порядку слева направо умножение или деление, а потом сложение или вычитание.

 

А здесь какие арифметические действия указаны?

 

:, * и +, —

 

Есть скобки?

 

Какие действия будем выполнять сначала?

Какие действия будем выполнять потом?

 

Выпишите выражения, которые относятся ко второму правилу.

Найдите их значения.

Проверка.

18 : 9 + 2 =

18 – 9 * 2 =

 

 

 

 

— Ответы детей

 

— да

 

— Тоже верно!

 

 

 

 

— О порядке действий.

 

 

 

 

 

 

 

 

— Мы будем исследовать порядок арифметических действий в выражениях.

 

 

 

 

 

 

 

 

 

 

 

 

— 2 действия, числа

 

— Скобки, разные действия

 

 

 

— Дети читают вслух правило.

 

 

 

 

 

 

— Нет

 

— Слева направо

 

 

 

 

 

 

 

 

 

 

 

— Дети читают вслух правило.

 

 

 

 

 

 

 

 

 

— Нет

 

 

*, : слева направо

+, — слева, направо

Познавательные УУД:

— уметь добывать новые знания – находить необходимую информацию в учебнике;

— уметь перерабатывать полученную информацию – наблюдать и делать выводы.

Регулятивные УУД:

— уметь определять цель деятельности на уроке с помощью учителя;

— уметь обнаруживать и формулировать учебную проблему совместно с учителем;

Коммуникативные УУД:

— уметь высказывать суждения с использованием математических терминов и понятий, формулировать в ходе выполнения задания вопросы и ответы, обосновывать этапы решения учебной задачи;

— участвовать в беседе на уроке.

5. Открытие нового знания

Правило 3.

Прочитайте правило на слайде.

 

В выражениях со скобками сначала вычисляют значения выражений в скобках. Затем слева направо по порядку выполняется умножение или деление, а потом сложение или вычитание.

Скобки есть?

Какие арифметические действия?

 

Как сейчас будем вычислять?

Выпишите выражения, которые относятся к данному правилу:

18 – ( 9 + 2) =

18 : ( 9 * 2) =

Проверка.

 

Алгоритм работы с выражением  

1. Определить правило.

2. Расставить порядок действий.

3. Найти значение выражений.

— Открываем учебник №293

— предлагаю потренироваться в решении числовых выражений по составленному алгоритму

1 человек у доски

-Запишите первое выражение из 1 столбика в тетрадь. Пользуясь алгоритмом, найдите значение выражения. ( обратить внимание порядок действия надписываем сверху Промежуточный результат подписываем внизу карандашом)

2 человек

-Запишите первое выражение из 2 столбика. Пользуясь алгоритмом, найдите значение выражения.

— Можно воспользоваться другой записью по действиям.

Сверху надписываем порядок действия, и выписываем каждое действие под числовым выражением, и не забываем переносить ответ в числовое выражение.

 

-Где нам в жизни пригодятся полученные знания.

-Верно итак отправляемся в магазин. У Вас на столах лежат задания. ( Сумма денег+ что надо купить)

-Вам необходимо составить выражения. То есть посчитать сколько сдачи вам должны дать в магазине.

— Дети читают вслух правило

 

 

 

 

 

— Есть

*, : и +, —

 

 

 

 

 

 

Работают у доски и в тетради

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

— При походе в магазин

Личностные УУД: 

Действие смыслообразования («какое значение, смысл имеет для меня умение учиться, зачем мне знать порядок выполнения действий в выражениях со скобками»).

Предметные УУД: 

— определять порядок действий в выражениях со скобками, применяя алгоритм действий на практике.

Познавательные УУД:

— уметь добывать новые знания – находить необходимую информацию в учебнике;

— уметь перерабатывать полученную информацию

Коммуникативные УУД:

— уметь высказывать суждения с использованием математических терминов и понятий, формулировать в ходе выполнения задания вопросы и ответы, обосновывать этапы решения учебной задачи;

— уметь слушать и понимать речь других;

— участвовать в беседе на уроке.

6. Рефлексия

—  Какое открытие мы сделали на уроке?

— Продолжи фразу:

-Было интересно узнать, что…

-Было трудно…

-Теперь я знаю, что…

-Теперь я могу…  

— Вспомним алгоритм сравнения.

— Где  можно применить полученные знания?

Оцените свою работу на уроке:

 работал (а) в полную силу, всё получилось – красная звёздочка

 работал (а) хорошо, но были трудности – зелёная звёздочка

 мог (ла) бы работать ещё лучше – жёлтая звёздочка

Отвечают на вопросы учителя

 

 

 

 

 

 

 

 

Оценивают сою работу

Регулятивные УУД:

— уметь оценивать полученный результат.

Коммуникативные УУД:

— уметь слушать и понимать речь других;

— участвовать в беседе на уроке.

Как решается пример со скобками. Порядок выполнения действий в выражениях без скобок и со скобками

На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления — это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 — 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 — 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 — (20 — 7) +15

32 + 9 * (19 — 16)

Будем действовать по правилу. В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие — умножение, второе — деление, третье — вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

37 + 9 — 6: 2 * 3 =

18: (11 — 5) + 47=

7 * 3 — (16 + 4)=

Рассуждаем так.

37 + 9 — 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие — деление, второе — умножение. Третье действие должно быть сложение, четвертое — вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — деление, третье — сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — умножение, третье — вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого — вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Festival.1september.ru ().
  2. Sosnovoborsk-soobchestva.ru ().
  3. Openclass.ru ().

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

Видеоурок «Порядок выполнения действий» подробно поясняет важную тему математики — последовательность выполнения арифметических операций при решении выражения. В ходе видеоурока рассматривается, какой приоритет имеют различные математические операции, как это применяется в вычислении выражений, приводятся примеры для усвоения материала, обобщаются полученные знания в решении заданий, где имеются все рассмотренные операции. С помощью видеоурока учитель имеет возможность быстрее достичь целей урока, повысить его эффективность. Видео может применяться в качестве наглядного материала, сопровождающего объяснение учителя, а также в качестве самостоятельной части урока.

В наглядном материале используются приемы, которые помогают лучше достичь понимания темы, а также запомнить важные правила. С помощью цвета и разного написания выделяются особенности и свойства операций, отмечаются особенности решения примеров. Анимационные эффекты помогают подавать последовательно учебный материал, а также обратить внимание учеников на важные моменты. Видео озвучено, поэтому дополняется комментариями учителя, помогающими ученику понять и запомнить тему.

Видеоурок начинается с представления темы. Затем отмечается, что умножение, вычитание являются операциями первой ступени, операции умножения и деления названы операциями второй ступени. Данным определением нужно будет оперировать дальше, выведено на экран и выделено цветным крупным шрифтом. Затем представляются правила, составляющие порядок выполнения операций. Выводится первое правило порядка, которое указывает, что при отсутствии скобок в выражении, наличию действий одной ступени, данные действия необходимо производить по порядку. Во втором правиле порядка утверждается, что при наличии действий обеих ступеней и отсутствии скобок, производятся первыми операции второй ступени, потом производятся операции первой ступени. Третье правило устанавливает порядок выполнения операций, для выражений, включающих скобки. Отмечается, что в этом случае сначала производятся операции в скобках. Формулировки правил выделены цветным шрифтом и рекомендованы к запоминанию.

Далее предлагается усвоить порядок выполнения операций, рассматривая примеры. Описывается решение выражения с содержанием только операций сложения, вычитания. Отмечаются основные особенности, которые влияют на порядок вычислений — отсутствуют скобки, присутствуют операции первой ступени. Ниже расписано по действиям, как выполняются вычисления, сначала вычитание, затем два раза сложение, а затем вычитание.

Во втором примере 780:39·212:156·13 требуется вычислить выражение, выполняя действия согласно порядку. Отмечается, что в данном выражении содержатся исключительно операции второй ступени, без скобок. В данном примере все действия производятся строго слева направо. Ниже поочередно расписываются действия, постепенно подходя к ответу. В результате вычисления получается число 520.

В третьем примере рассматривается решение примера, в котором есть операции обеих ступеней. Отмечается, что в данном выражении отсутствуют скобки, но есть действия обеих ступеней. Согласно порядку выполнения операций, производятся операции второй ступени, после этого — операции первой ступени. Ниже — по действиям расписывается решение, в котором выполняются сначала три операции — умножение, деление, еще одно деление. Затем с найденными значениями произведения и частных производятся операции первой ступени. В ходе решения фигурными скобками объединены действия каждой ступени для наглядности.

В следующем примере содержатся скобки. Поэтому демонстрируется, что первые вычисления производятся над выражениями в скобках. После них производятся операции второй ступени, следом — первой.

Далее представлено замечание о том, в каких случаях можно не записывать скобки при решении выражений. Замечено, что это возможно только в случае, когда устранение скобок не изменить порядок выполнения операций. Примером служит выражение со скобками (53-12)+14, которое содержит только операции первой ступени. Переписав 53-12+14 с устранением скобок, можно отметить, что порядок поиска значения не изменится — сначала выполняется вычитание 53-12=41, а затем сложение 41+14=55. Ниже отмечается, что менять порядок операций при нахождении решения выражения можно, используя свойства операций.

В конце видеоурока изученный материал обобщается в выводе, что каждое выражение, требующее решения, задает определенную программу для вычисления, состоящую из команд. Пример такой программы представляется при описании решения сложного примера, представляющего собой частное (814+36·27) и (101-2052:38). Заданная программа содержит пункты: 1) найти произведение 36 с 27, 2) добавить к 814 найденную сумму, 3) поделить на 38 число 2052, 4) отнять из числа 101 результат деления 3 пункта, 5) поделить результат выполнения пункта 2 на результат пункта 4.

В конце видеоурока представлен перечень вопросов, на которые предлагается ответить ученикам. В их числе умение отличить действия первой и второй ступеней, вопросы о порядке выполнения действий в выражениях с действиями одной ступени и разных ступеней, о порядке выполнения действий при наличии скобок в выражении.

Видеоурок «Порядок выполнения действий» рекомендуется применять на традиционном школьном уроке для повышения эффективности урока. Также наглядный материал будет полезен для проведения дистанционного обучения. Если ученику необходимо дополнительное занятие для освоения темы или он изучает ее самостоятельно, видео может быть рекомендовано для самостоятельного изучения.

Октябрь 24th, 2017 admin

Лопатко Ирина Георгиевна

Цель: формирование знаний о порядке выполнения арифметических действий в числовых выражениях без скобок и со скобками, состоящих из 2-3 действий.

Задачи:

Образовательная: формировать у учащихся умение пользоваться правилами порядка выполнения действий при вычислении конкретных выражений, умение применять алгоритм действий.

Развивающая: развивать навыки работы в паре, мыслительную деятельность учащихся, умение рассуждать, сопоставлять и сравнивать, навыки вычисления и математическую речь.

Воспитательная: воспитывать интерес к предмету, толерантное отношение друг к другу, взаимное сотрудничество.

Типа: изучение нового материала

Оборудование: презентация, наглядности, раздаточный материал, карточки, учебник.

Методы: словесный, наглядно- образный.

ХОД УРОКА

  1. Организационный момент

Приветствие.

Мы сюда пришли учиться,

Не лениться, а трудиться.

Работаем старательно,

Слушаем внимательно.

Маркушевич сказал великие слова: “Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает настойчивость и упорство в достижении цели .” Добро пожаловать на урок математики!

  1. Актуализация знаний

Предмет математики столь серьезен, что не следует упускать ни одной возможности сделать его более занимательным. (Б. Паскаль)

Предлагаю выполнить логические задания. Вы готовы?

Какие два числа, если их перемножить, дают такой же результат, что и при их сложении? (2 и 2)

Из-под забора видно 6 пар лошадиных ног. Сколько этих животных во дворе? (3)

Петух, стоя на одной ноге весит 5кг. Сколько он будет весить, стоя на двух ногах? (5кг)

На руках 10 пальцев. Сколько пальцев на 6 руках? (30)

У родителей 6 сыновей. Каждый имеет сестру. Сколько всего детей в семье? (7)

Сколько хвостов у семи котов?

Сколько носов у двух псов?

Сколько ушей у 5 малышей?

Ребята, именно такой работы я и ждала от вас: вы были активны, внимательны, сообразительны.

Оценивание: словесное.

Устный счет

КОРОБКА ЗНАНИЙ

Произведение чисел 2 * 3, 4 * 2;

Частные чисел 15: 3, 10:2;

Сумма чисел 100 + 20, 130 + 6, 650 + 4;

Разность чисел 180 – 10, 90 – 5, 340 – 30.

Компоненты умножения, деления, сложения, вычитания.

Оценивание: ученики самостоятельно оценивают друг друга

  1. Сообщение темы и цели урока

“Чтобы переварить знания, надо поглощать их с аппетитом.” (А.Франц)

Вы готовы поглощать знания с аппетитом?

Ребята, Маше и Мише была предложена такая цепочка

24 + 40: 8 – 4=

Маша её решила так:

24 + 40: 8 – 4= 25 правильно? Ответы детей.

А Миша решил вот так:

24 + 40: 8 – 4= 4 правильно? Ответы детей.

Что вас удивило? Вроде и Маша и Миша решили правильно. Тогда почему ответы у них разные?

Они считали в разном порядке, не договорились, в каком порядке будут считать.

От чего зависит результат вычисления? От порядка.

Что вы видите в этих выражениях? Числа, знаки.

Как в математике называют знаки? Действия.

О каком порядке не договорились ребята? О порядке действий.

Что мы будем изучать на уроке? Какая тема урока?

Мы будем изучать порядок арифметических действий в выражениях.

Для чего нам нужно знать порядок действий? Правильно выполнять вычисления в длинных выражениях

«Корзина знаний» . (Корзина висит на доске)

Ученики называют ассоциации связанные с темой.

  1. Изучение нового материала

Ребята, послушайте, пожалуйста, что говорил французский математик Д.Пойя: “Лучший способ изучить что-либо — это открыть самому”. Вы готовы к открытиям?

180 – (9 + 2) =

Прочитайте выражения. Сравните их.

Чем похожи? 2 действия, числа одинаковые

Чем отличаются? Скобки, разные действия

Правило 1.

Прочитайте правило на слайде. Дети читают вслух правило.

В выражениях без скобок, содержащих только сложение и вычитание или умножение и деление, действия выполняются в том порядке, как они записаны: слева направо.

О каких действиях здесь говорится? +, — или : , ·

Из данных выражений найдите только те, которые соответствуют правилу 1. Запишите их в тетрадь.

Вычислите значения выражений.

Проверка.

180 – 9 + 2 = 173

Правило 2.

Прочитайте правило на слайде.

Дети читают вслух правило.

В выражениях без скобок сначала выполняются по порядку слева направо умножение или деление, а потом сложение или вычитание.

:, · и +, — (вместе)

Есть скобки? Нет.

Какие действия будем выполнять сначала? ·, : слева направо

Какие действия будем выполнять потом? +, — слева, направо

Найдите их значения.

Проверка.

180 – 9 * 2 = 162

Правило 3

В выражениях со скоб­ками, сна­ча­ла вы­чис­ля­ют зна­че­ние вы­ра­же­ний в скоб­ках, затем выполняются по порядку слева направо умножение или деление, а потом сложение или вычитание.

А здесь какие арифметические действия указаны?

:, · и +, — (вместе)

Есть скобки? Да.

Какие действия будем выполнять сначала? В скобках

Какие действия будем выполнять потом? ·, : слева направо

А затем? +, — слева, направо

Выпишите выражения, которые относятся ко второму правилу.

Найдите их значения.

Проверка.

180: (9 * 2) = 10

180 – (9 + 2) = 169

Еще раз все вместе проговариваем правило.

ФИЗМИНУТКА

  1. Закрепление

“Много из математики не остается в памяти, но когда поймешь ее, тогда легко при случае вспомнить забытое.” , говорил М.В. Остроградский. Вот и мы сейчас вспомним, что мы только что изучили и применим новые знания на практике.

Страница 52 №2

(52 – 48) * 4 =

Страница 52 №6 (1)

Учащиеся собрали в теплице 700 кг овощей: 340 кг огурцов, 150 кг помидоров, а остальные – перец. Сколько килограммов перца собрали учащиеся?

О чем говорится? Что известно? Что нужно найти?

Давайте попробуем решить эту задачу выражением!

700 – (340 + 150) = 210 (кг)

Ответ: 210 кг перца собрали учащиеся.

Работа в парах.

Даны карточки с заданием.

5 + 5 + 5 5 = 35

(5+5) : 5 5 = 10

Оценивание:

  • быстрота – 1 б
  • правильность — 2 б
  • логичность – 2 б
  1. Домашнее задание

Страница 52 № 6 (2) решить задачу, записать решение в виде выражения.

  1. Итог, рефлексия

Кубик Блума

Назови тему нашего урока?

Объясни порядок выполнения действий в выражениях со скобками.

Почему важно изучать эту тему?

Продолжи первое правило.

Придумай алгоритм выполнения действий в выражениях со скобками.

“Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей работе.” (М.И. Калинин)

Спасибо за работу на уроке!!!

ПОДЕЛИТЬСЯ Вы можете В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория «Ахиллес и черепаха». Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт… Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что «… дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось… к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса… » [Википедия, » Апории Зенона «]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие «бесконечность» в этой ситуации, то правильно будет говорить «Ахиллес бесконечно быстро догонит черепаху».

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию «Ахиллес и черепаха» очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто — достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве — это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, «во множестве не может быть двух идентичных элементов», но если идентичные элементы во множестве есть, такое множество называется «мультимножество». Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова «совсем». Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой «чур, я в домике», точнее «математика изучает абстрактные понятия», есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его «математическое множество зарплаты». Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: «к другим это применять можно, ко мне — низьзя!». Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами — на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально…

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует — всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова — значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов — у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких «мыслимое как не единое целое» или «не мыслимое как единое целое».

воскресенье, 18 марта 2018 г.

Сумма цифр числа — это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу «Сумма цифр числа». Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры — это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: «Найти сумму графических символов, изображающих любое число». Математики эту задачу решить не могут, а вот шаманы — элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки — это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот «курсы кройки и шитья» от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых — нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Открывает дверь и говорит:

Ой! А это разве не женский туалет?
— Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский… Нимб сверху и стрелочка вниз — это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А — это не «минус четыре градуса» или «один а». Это «какающий человек» или число «двадцать шесть» в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Тема урока: « Порядок выполнения действий в выражениях без скобок и со скобками».

Цель урока : создать условия для закрепления умений применять знания о порядке выполнения действий в выражениях без скобок и со скобками в различных ситуациях, умений решать задачи выражением.

Задачи урока.

Образовательные:

Закрепить знания учащихся о правилах выполнения действий в выражениях без скобок и со скобками; формировать у них умение пользоваться этими правилами при вычислении конкретных выражений; совершенствовать вычислительные навыки; повторить табличные случаи умножения и деления;

Развивающие:

Развивать вычислительные навыки, логическое мышление, внимание, память, познавательные способности учащихся,

коммуникативные навыки;

Воспитательные:

Воспитывать толерантное отношение друг к другу, взаимное сотрудничество,

культуру поведения на уроке, аккуратность, самостоятельность, воспитывать интерес к занятиям математикой.

Формируемые УУД:

Регулятивные УУД:

работать по предложенному плану, инструкции;

выдвигать свои гипотезы на основе учебного материала;

осуществлять самоконтроль.

Познавательные УУД:

знать правила порядка выполнения действий:

уметь разъяснить их содержание;

понимать правило порядка выполнения действий;

находить значения выражений согласно правилам порядка выполнения;

действий, используя для этого текстовые задачи;

записывать решение задачи выражением;

применять правила порядка выполнения действий;

уметь применять полученные знания при выполнении контрольной работы.

Коммуникативные УУД:

слушать и понимать речь других;

выражать свои мысли с достаточной полнотой и точностью;

допускать возможность различных точек зрения, стремиться понимать позицию собеседника;

работать в команде разного наполнения (паре, малой группе, целым классом), участвовать в обсуждениях, работая в паре;

Личностные УУД:

устанавливать связь между целью деятельности и её результатом;

определять общие для всех правила поведения;

выражать способность к самооценке на основе критерия успешности учебной деятельности.

Планируемый результат:

Предметные:

Знать правила порядка выполнения действий.

Уметь разъяснить их содержание.

Уметь решать задачи с помощью выражений.

Личностные:
Уметь проводить самооценку на основе критерия успешности учебной деятельности.

Метапредметные:

Уметь определять и формулировать цель на уроке с помощью учителя; проговаривать последовательность действий на уроке; работать по коллективно составленному плану; оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки; планировать своё действие в соответствии с поставленной задачей; вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок; высказывать своё предположение(Регулятивные УУД ).

Уметь оформлять свои мысли в устной форме; слушать и понимать речь других; совместно договариваться о правилах поведения и общения в школе и следовать им (Коммуникативные УУД ).

Уметь ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя; добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке (Познавательные УУД ).

Ход урока

1. Организационный момент.

Чтоб урок наш стал светлее,

Мы поделимся добром.

Вы ладони протяните,

В них любовь свою вложите,

И друг другу улыбнитесь.

Займите свои рабочие места.

Открыли тетради, записали число и классная работа.

2. Актуализация знаний.

На уроке нам с вами предстоит подробно рассмотреть порядок выполнения арифметических действий в выражениях без скобок и со скобками.

Устный счёт.

Игра «Найди правильный ответ».

(У каждого ученика лист с числами)

Я читаю задания, а вы, выполнив в уме действия, должны полученный результат, т. е. ответ, зачеркнуть крестиком.

    Я задумала число, из него вычла 80, получила 18. Какое число я задумала? (98)

    Я задумала число, к нему прибавила 12, получила 70. Какое число я задумала? (58)

    Первое слагаемое 90, второе слагаемое 12. Найдите сумму. (102)

Соедините полученные результаты.

Какую геометрическую фигуру вы получили? (Треугольник)

Расскажите, что вы знаете о данной геометрической фигуре. (Имеет 3 стороны, 3 вершины, 3 угла)

Продолжаем работать по карточке.

    Найдите разность чисел 100 и 22. (78)

    Уменьшаемое 99, вычитаемое 19. Найдите разность. (80).

    Возьмите число 25 4 раза. (100)

Начертите внутри треугольника еще 1 треугольник, соединяя полученные результаты.

Сколько треугольников получилось? (5)

3. Работа над темой урока. Наблюдение за изменением значения выражения от порядка выполнения арифметических действий

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .

Порядок выполнения арифметических действий в выражениях без скобок

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления – это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

Порядок выполнения арифметических действий в выражениях со скобками

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 — 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 — 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Правило выполнения арифметических действий в выражениях без скобок и со скобками

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

4. Закрепление Выполнение тренировочных заданий на изученное правило

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 — (20 — 7) +15

32 + 9 * (19 — 16)

Будем действовать по правилу. В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие – умножение, второе – деление, третье – вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

37 + 9 — 6: 2 * 3 =

18: (11 — 5) + 47=

7 * 3 — (16 + 4)=

Рассуждаем так.

37 + 9 — 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие – деление, второе – умножение. Третье действие должно быть сложение, четвертое – вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – деление, третье – сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – умножение, третье – вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого – вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

5. Подведение итогов.

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками. В ходе выполнения заданий определяли, зависит ли значение выражений от порядка выполнения арифметических действий, узнали, отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренировались в применении изученного правила, искали и исправляли ошибки, допущенные при определении порядка действий.

Табличка на двери

Порядок выполнения математических действий

Читаем выражение слева направо и выбираем порядок действий по приоритету. Сначала выполняем действия в скобках. Затем умножение и/или деление. Далее складываем и вычитаем.

Если скобки имеют несколько вложений, то есть если внутри скобок есть ещё скобки, то сначала выполняем действия во внутренних скобках. Для простоты понимания, выражение в скобках можно воспринимать как самостоятельное выражение, то есть как отдельный пример, который надо решить. Внутри скобок действия выполняются согласно тому же порядку: Действия в скобках, затем умножение/деление, затем сложение/вычитание.

Умножение и деление не имеет между собой приоритета и выполняются слева направо, также как и сложение с вычитанием.

38 – (10 + 6) = 22;

Итак, вспомним о том, что сначала вычисляются выражения в скобках

1) в скобках: 10 + 6 = 16 ;

2) вычитание: 38 – 16 = 22 .

Если в выражение без скобок входит только сложение и вычитание, или только умножение и деление, то действия выполняются по порядку слева направо.

10 ÷ 2 × 4 = 20;

Порядок выполнения действий:

1) слева направо, сначала деление: 10 ÷ 2 = 5 ;

2) умножение: 5 × 4 = 20 ;

10 + 4 – 3 = 11 , т.е.:

Если в выражении без скобок есть не только сложение и вычитание, но и умножение или деление, то действия выполняются по порядку слева направо, но преимущество имеет умножение и деление, их выполняют в первую очередь, а за ними и сложение с вычитанием.

18 ÷ 2 – 2 × 3 + 12 ÷ 3 = 7

Порядок выполнения действий:

4) 9 – 6 = 3 ; т.е. слева направо – результат первого действия минус результат второго;

5) 3 + 4 = 7 ; т.е. результат четвертого действия плюс результат третьего;

Если в выражении есть скобки, то сначала выполняются выражения в скобках, затем умножение и деление, а уж потом сложение с вычитанием.

30 + 6 × (13 – 9) = 54 , т.е.:

1) выражение в скобках: 13 – 9 = 4 ;

2) умножение: 6 × 4 = 24 ;

3) сложение: 30 + 24 = 54 ;

Итак, подведем итоги. Прежде чем приступить к вычислению, надо проанализировать выражение: есть ли в нем скобки и какие действия в нем имеются. После этого приступать к вычислениям в следующем порядке:

1) действия, заключенные в скобках;

2) умножение и деление;

3) сложение и вычитание.

Если вы хотите получать анонсы наших статей подпишитесь на рассылку “Новости сайта“.

    Продолжаем рубрику «основные содержательные линии курса математики начальной школы». В.Продолжаем тему «основные содержательные линии курса математики начальной школы». В.Продолжим изучение предметов, которые изучают наши дети в начальной школе.Продолжим изучение программы математики в начальной школе и на этот.Одним из простых арифметических действий является деление. Мы знаем, что.

Понравилась статья – поделитесь с друзьями:

Оставляйте пожалуйста комментарии в форме ниже

Отзывов (58)

Полезная статья. Спасибо!

Очень все понятно. Для детей важна такая разъяснительная работа. Где Вы были, когда я пошла в школу?

)) Покажу сыну, пусть изучает. Я это вроде все помню. Спасибо )

Спасибо, сайт нужный. Честно говоря, уже кое – что подзабыла, а уроки с внучкой делаем. Вот, вспомнилось…

Очень необычная тематика сайта. Но тем, наверное, он и интересен. Иногда не знаешь, как объяснить ребенку тот или иной материал школьной программы.

Какое подспорье для родителей. И полезности для деток. Не всегда они материал усваивают в школе.

Сам учитель. Сайт очень полезный. Детям и родителям – хорошее подспорье

Вы взяли пример из головы, в начальной школе не изучают отрицательных чисел, а также не оперируют такими большими числами. Результат пятого действия будет отрицательным.
Но попробуем решить данный пример:
1) Выражение в скобках: 64385 – 39288 = 25097
Далее умножение:
2) 4217 * 4 = 16868
3) 25097 * 3 = 75291
4) 321 * 1000 = 321000
Теперь слева на право
5) 16868 – 75291 = -58423 (. )
Это уже шестой класс, тема “Сложение положительных и отрицательных чисел”
6) -58423 + 321000
От перемены мест слагаемых сумма не меняется:
321000 + (-58423) = 321000 – 58423 = 262577

Помогите люди добрые.
Я тут читал кое где в иностранной литературе, что если в выражении есть действия двух уроовней 1(сложение и вычитание) и 2 (умножение и деление)
к примеру 20-6:3х2+2=
то в первую очередь должно выполнятся действия 2-ого уровня, потом 1-го. Но загвоздка с тем, что говорится – надо выполнить сперва умножение а потом деление, а не как нас учили по правилу слева направо.
Объясните плз.

Обязательно слева на право, так как умножение и деление равноценны. Но, если представить умножение в виде дроби:

тогда 2 перенесется в числитель и первым выполняется умножение
(6 * 2)/3 = (6:3)*2 = 4.
То есть порядок выполнения важен!

Помогите решить пример у всех расходятся ответы
6/2*(1+2)
ответь пожалуйста

Если 6 : 2 * (1 + 2) =
1) 1 + 2 = 3
2) 6 : 2 = 3
3) 3 * 3 = 9

Если
6
———-
2 * (1 + 2)
то есть 6 : (2 * (1 + 2))
1) 1 + 2 = 3
2) 2 * 3 = 6
3) 6 : 6 = 1

Это два разных примера.
Если

6 * (1 + 2)
———–
2
1) 1 + 2 = 3
2) 6 * 3 = 18
3) 18 : 2 = 9
Это тот же первый вариант

Если Вы правильно написали, то это первый вариант и ответ 9

Очень жаль, если вы этому детей учите.. Примеры 6:2*(1+2) и 6/2*(1+2) одинаковые… никогда не было такого, чтобы черта дроби и двоеточие означали разные действия или определяли порядок действий.
В данном случае необходимо также учесть правило раскрытия скобок:
6:2*(1+2) = 6:(2*1 + 2*2) = 6:(2+4) = 6:6 = 1 – единственный верный ответ.

6:2*(1+2) и 6/2*(1+2) это абсолютно эквивалентные записи (то есть одинаковые).

Порядок действий следующий:
1) 1+2 = 3
2) 6:2 = 3
3) 3*3 = 9

Ваш вариант с раскрытием скобок будет верен, если запись выражения будет следующей:
6:(2*(1+2)) = 1;

Ваше недоумение понятно, оно имеет глубокие исторические корни, в старых учебниках по алгебре можно встретить упоминание о именно такой последовательности действий, как предлагаете вы. Это связанно с неоднозначностью интерпретации записи. Но в наше время это разночтение устранено. Так что не надо забивать людям голову неверной информацией, а тем более забивать этими пережитками прошлого головы детей.
Простой пример. Ребенок на уроке информатики на языке Паскаль запишет y:=6:2*(1+2) и, поверьте мне, получит y=9. Не ломайте детскую психику.
В связи с порядком действий бывают забавные ситуации когда человеку в руки попадает калькулятор с обратной польской записью, а он и понятия не имеет об этом. И начинается “Святая Война за Истину”. Будьте проще, меньше пафоса, мы все люди и нам свойственно ошибаться. Добра Вам.

Вы умножаете или прибавляете сначала без скобок?

Вы сначала умножаете или прибавляете без скобок?

Порядок операций говорит вам сначала выполнить умножение и деление , работая слева направо, прежде чем выполнять сложение и вычитание. Продолжайте выполнять умножение и деление слева направо. Далее складываем и вычитаем слева направо.

Вы всегда умножаете перед сложением?

Правило 20: Умножение и деление должны быть завершены до сложения и вычитания …. Чтобы знать правильный ответ, нужно знать правильный порядок операций по отношению к сложению, вычитанию, умножению, делению и по отношению к скобкам.

Какое золотое правило решения уравнений?

Делайте с одной частью уравнения то же, что и с другой! Уравнение похоже на весы. Если мы что-то надеваем или снимаем с одной стороны, шкала (или уравнение) становится несбалансированной. Решая математические уравнения, мы всегда должны поддерживать баланс «шкалы» (или уравнения), чтобы обе стороны ВСЕГДА были равны .

Что такое правило DMAS?

Деление, умножение, сложение и вычитание (DMAS) — это элементарное правило для порядка выполнения двоичных операций . … DMAS, хороший инструмент, но он менее убедителен/привлекателен, чтобы признать порядок его работы.

Вы начинаете со скобок при упорядочении математических операций?

  • Попробуйте эти суммы самостоятельно, а затем откройте окно (щелкните символ + слева от сумм), чтобы увидеть работу и ответы.В этой сумме нет ни скобок, ни порядков. Умножение предшествует сложению, поэтому вы начинаете с 20 × 3 = 60. Таким образом, ответ равен 63. Начните со скобок. (3 + 2) = 5.

Вам нужно сделать операцию внутри скобок?

  • Вам нужно сделать операцию, сначала в скобках 3 + 2, затем умножьте ответ на 4. 3 + 2 = 5. Если вы проигнорировали скобки и сделали расчет слева направо 4 × 3 + 2, вы получил бы 14.Вы можете видеть, как скобки влияют на ответ.

Когда вы используете квадратные и фигурные скобки в математике?

  • Скобки также используются после скобок для группировки чисел и переменных. Как правило, вы сначала используете круглые скобки, затем квадратные скобки, а затем фигурные скобки. Вот пример задачи со скобками: 4 — 3[4 — 2(6 — 3)] ÷ 3. = 4 — 3[4 — 2(3)] ÷ 3 (Сначала выполните операцию в скобках; оставьте скобки.)

Используете ли вы правило BODMAS, если скобок нет?

  • Ответ: Да, мы используем правило BODMAS, чтобы получить правильный ответ, даже если нет скобок.Если скобок нет, начните решение с «порядка» или «из», за которыми следует деление или умножение (то, что идет первым слева направо), а затем сложение или вычитание (то, что идет первым слева направо).

Круглые скобки и ассоциативное свойство

Круглые скобки группируют операции вместе, указывая вам на выполнение любых операций внутри набора скобок до выполнения операций за его пределами. Скобки могут сильно повлиять на результат, который вы получите при решении задачи, особенно в задаче со смешанными операциями.Однако в двух важных случаях перемещение скобок не меняет ответа на задачу.
  • Ассоциативное свойство сложения говорит, что когда каждая операция является сложением, вы можете группировать числа, как вам нравится, и выбирать, какую пару чисел складывать первой; вы можете перемещать скобки без изменения ответа.

  • Ассоциативное свойство умножения говорит, что вы можете выбрать, какую пару чисел умножать первой, поэтому, когда каждая операция является умножением, вы можете перемещать круглые скобки без изменения ответа.

Вместе взятые, ассоциативность и коммутативность позволяют полностью переставить все числа в любой задаче на сложение или умножение.

Примеры вопросов

  1. Сколько (21 – 6) / 3? Что такое 21 – (6/3)?

    5 и 19. Чтобы вычислить (21 – 6)/3, сначала проделайте операцию внутри скобок – то есть 21 − 6 = 15:

    (21 – 6) / 3 = 15 / 3

    Теперь закончите задачу, разделив: 15 / 3 = 5.

    Чтобы решить 21 — (6/3), сначала проделайте операцию внутри скобок — то есть 6/3 = 2:

    21 – (6 / 3) = 21 – 2

    Закончите, вычитая 21 − 2 = 19. Обратите внимание, что размещение скобок меняет ответ.

  2. Решите 1 + (9 + 2) и (1 + 9) + 2.

    12 и 12. Чтобы решить 1 + (9 + 2), сначала проделайте операцию внутри скобок — то есть 9 + 2 = 11:

    1 + (9 + 2) = 1 + 11

    Завершите, добавив 1 + 11 = 12.

    Чтобы решить (1 + 9) + 2, сначала выполните операцию внутри скобок, то есть 1 + 9 = 10:

    (1 + 9) + 2 = 10 + 2

    Завершите сложением 10 + 2 = 12. Обратите внимание, что единственная разница между двумя задачами заключается в размещении скобок, но поскольку обе операции являются сложением, перемещение скобок не меняет ответ.

  3. Решите 2 x (4 x 3) и (2 x 4) x 3.

    24 и 24. Чтобы решить 2 х (4 х 3), сначала выполните операцию внутри скобок, то есть 4 х 3 = 12:

    2 х (4 х 3) = 2 х 12

    Закончите, умножив 2 x 12 = 24.

    Чтобы решить (2 х 4) х 3, сначала выполните операцию внутри круглых скобок, то есть 2 х 4 = 8:

    (2 х 4) х 3 = 8 х 3

    Завершите умножением 8 х 3 = 24. Как бы вы ни группировали умножение, ответ один и тот же.

  4. Решите 41 х 5 х 2.

    410. Последние два числа маленькие, поэтому заключите их в скобки:

    41 х 5 х 2 = 41 х (5 х 2)

    Сначала выполните умножение в скобках:

    41 х (5 х 2) = 41 х 10

    Теперь вы можете легко умножить 41 х 10 = 410.

Практические вопросы

  1. Найдите значение (8 x 6) + 10.

  2. Найдите значение 123/(145 – 144).

  3. Решите следующие две задачи:

    а. (40/2) + 6 = ?
    б. 40 / (2 + 6) = ?

    Имеют ли скобки значение в ответах?

  4. Решите следующие две задачи:

    а. (16 + 24) + 19
    б. 16 + (24 + 19)

    Имеют ли скобки значение в ответах?

  5. Решите следующие две задачи:

    а. (18 х 25) х 4
    б. 18 х (25 х 4)

    Имеют ли скобки значение в ответах?

  6. Найдите значение 93 769 x 2 x 5. ( Подсказка: Используйте ассоциативное свойство для умножения, чтобы упростить задачу.)

Ниже приведены ответы на практические вопросы:
  1. 58.

    Сначала выполните умножение в скобках:

    (8 х 6) + 10 = 48 + 10

    Теперь добавьте: 48 + 10 = 58.

  2. 123.

    Сначала выполните вычитание в скобках:

    123/(145 – 144) = 123/1

    Теперь просто разделите 123 / 1 = 123.

  3. Решите следующие две задачи:

    а. (40/2) + 6 = 20 + 6 = 26
    б. 40 / (2 + 6) = 40 / 8 = 5

    Да, расстановка скобок меняет результат.

  4. Решите следующие две задачи:

    а. (16 + 24) + 19 = 40 + 19 = 59
    б. 16 + (24 + 19) = 16 + 43 = 59

    Нет, из-за ассоциативного свойства сложения расстановка скобок не меняет результат.

  5. Решите следующие две задачи:

    а. (18 х 25) х 4 = 450 х 4 = 1800
    б. 18 х (25 х 4) = 18 х 100 = 1800

    Нет, из-за ассоциативности умножения расстановка скобок не меняет результат.

  6. 93 769 х 2 х 5 = 937 690.

    Эту проблему проще всего решить, заключив скобки вокруг 2 x 5:

    93 769 х (2 х 5) = 93 769 х 10 = 937 690

Вы умножаете первым, если нет скобок? – JanetPanic.com

Вы умножаете первым, если нет скобок?

Если на одном уровне в порядке операций есть несколько операций, двигайтесь слева направо.вы работаете так: сначала обратите внимание, что здесь нет скобок или экспонент, поэтому мы переходим к умножению и делению. Есть только одно умножение, поэтому мы делаем его первым и в итоге получаем 9 – 5 + 2.

Является ли Бодмас необязательным?

Абсолютно нет — и по двум причинам. Причина № 1: если мне нужно вычислить 2 × (3 + 4), строго следуя BODMAS, вы должны сначала выполнить сложение, потому что оно заключено в скобки, поэтому вы получите 2 × 7 = 14. Это правильный ответ, но от вас ни в малейшей степени не требовалось делать это таким образом.

Всегда ли применяется правило Бодмаса?

Когда вы завершаете математическое числовое предложение, включающее несколько различных операций, BODMAS помогает вам узнать, в каком порядке их выполнять. Все, что указано в скобках, должно быть завершено сначала, затем порядок, затем любое деление или умножение и, наконец, сложение или вычитание.

Как упростить Бодмаса?

При упрощении выражения в первую очередь необходимо удалить черту. После удаления полосы необходимо снять скобки, строго в порядке ( ), { } и [ ]….ПРАВИЛО БОДМА:

В Vinculum означает брусок как (-)
О из
Д Раздел [÷]
М Умножение [х]
А Дополнение [+]

Что представляет М в Бодмасе?

Правило

BODMAS — это аббревиатура, используемая для запоминания порядка операций, которым необходимо следовать при решении выражений в математике.Это означает B — скобки, O — порядок степеней или корней, D — деление, M — умножение, A — сложение и S — вычитание.

Кто изобрел Бодмаса?

Ахилл Реселфельт

Вы умножаете или добавляете, чтобы найти площадь?

Площадь — это измерение поверхности фигуры. Чтобы найти площадь прямоугольника или квадрата, нужно умножить длину и ширину прямоугольника или квадрата. Площадь А равна х умножить на у.

Почему существует порядок действий?

Порядок операций — это правило, указывающее правильный порядок решения различных частей математической задачи.Вычитание, умножение и деление — все это примеры операций.) Порядок операций важен, потому что он гарантирует, что все люди смогут читать и решать задачу одинаково.

Какую операцию нужно решить первой?

Порядок операций сообщает нам порядок решения шагов в выражениях с более чем одной операцией. Сначала мы решаем любые операции внутри скобок или скобок. Во-вторых, мы решаем любые показатели. В-третьих, мы решаем все умножение и деление слева направо.

Всегда ли применяется порядок операций?

Порядок операций указан в скобках. учащийся может не знать, что сначала нужно выполнить умножение.

Каков ответ на уравнение 50/50 25×0 2 2?

Вот так, 50+50-25×0+2+2 = 104. И снова ответ на сложную математическую задачу 8-го класса — 104.

При использовании Pemdas вы сначала добавляете или вычитаете?

Исходя из порядка операций, умножение имеет приоритет перед сложением и вычитанием, поэтому мы будем умножать первыми.Затем вычтите, а затем сложите, так как операция вычитания предшествует сложению слева направо. Пример 2. Упростите следующее выражение, используя порядок операций.

Вы распределяете сначала или в скобках?

При выполнении алгебраического распределения вы получаете один и тот же ответ независимо от того, распределяете ли вы сначала или сначала добавляете то, что находится в скобках. Сложение сначала того, что в скобках, предпочтительнее, когда распределение сначала дает вам слишком много больших проблем с умножением.

Как распределить несколько скобок?

Когда вы распределяете по алгебре, вы умножаете каждый член в круглых скобках на другой член, находящийся вне круглых скобок. Итак, когда вы распределяете бином по нескольким терминам, вы просто применяете процесс распределения дважды. Разбейте первый бином на два его члена.

Является ли Пемдас таким же, как Бодмас?

BODMAS означает скобки, порядок, деление, умножение, сложение и вычитание. BIDMAS и PEMDAS делают одно и то же, но используют разные слова.BODMAS объясняет «порядок операций» в математике, а BIDMAS и PEMDAS делают то же самое, но используют немного разные слова.

Что на первом месте при умножении или делении по Пемдасу? – Энциклопедия Википедии?

Экспоненты отсутствуют. Мы начинаем с умножения и деления , работая слева направо. ПРИМЕЧАНИЕ. Несмотря на то, что в PEMDAS умножение предшествует делению, они выполняются на одном шаге слева направо.Сложение и вычитание также выполняются на одном шаге.

В связи с этим, каков правильный порядок операций?

практических вопросов. Ответ: Правильный ответ: 56 . Порядок операций можно запомнить по аббревиатуре PEMDAS, которая означает: круглые скобки, показатели степени, умножение и деление слева направо, сложение и вычитание слева направо.

Что касается этого, каковы четыре правила математики?

Четыре правила математики: сложение, вычитание, умножение и деление .

Кроме того, применяется ли Pemdas при отсутствии скобок?

Без круглых скобок правила PEMDAS подразумевают, что вы должны сначала выполнить деление . Со скобками 3x теперь становится группой. Технически умножение должно происходить перед делением (но вы все равно можете делать алгебраические упрощения, например, отменять общий множитель).

Вы сначала умножаете скобки? Круглые скобки являются символом группировки, и чисел внутри них должны быть вычислены первыми .Показатель степени 2 говорит вам умножать число само на себя, а не на 2.

17 связанных вопросов ответы найдены


Каковы 4 порядка операций?

Порядок операций гласит, что операции должны выполняться в следующем порядке: круглые скобки, возведения в степень, умножение, деление, сложение и вычитание .

Что на первом месте в порядке операций?

При необходимости напомните им, что в порядке операций умножение и деление предшествуют сложению и вычитанию .

Правильно ли выбран Пемдас или Бодмас?

BODMAS означает скобки, порядок, деление, умножение, сложение и вычитание. BIDMAS и PEMDAS делают то же самое, что и , но используют разные слова. BODMAS объясняет «порядок операций» в математике, а BIDMAS и PEMDAS делают то же самое, но используют немного разные слова.

Какое золотое правило решения уравнений?

Делайте с одной частью уравнения то же, что и с другой!

Уравнение похоже на весы.Если мы что-то надеваем или снимаем с одной стороны, шкала (или уравнение) становится несбалансированной. Решая математические уравнения, мы всегда должны поддерживать «шкалу» (или уравнение) сбалансированной, чтобы обе стороны ВСЕГДА были равны .

Что такое правило DMAS?

Деление, умножение, сложение и вычитание (DMAS) — это элементарное правило для порядка выполнения двоичных операций . … DMAS, хороший инструмент, но менее убедительный/привлекательный, чтобы признать порядок его работы.

Что на первом месте в Бодмасе?

Правило BODMAS гласит, что мы должны сначала вычислить скобки (2 + 4 = 6) , затем порядки (5 2 = 25), затем любое деление или умножение (3 x 6 (ответ в скобках) = 18) и, наконец, любое сложение или вычитание (18 + 25 = 43). Дети могут получить неправильный ответ 35, работая слева направо.

Пемдас лжет?

Проблема в том, что PEMDAS — ложь .PEMDAS предоставляет инструмент памяти (мнемонику) только для шагов, которые могут применяться к некоторым выражениям в некоторых ситуациях. … PEMDAS не дает никакой интерпретации этого выражения.

Применяется ли порядок операций при отсутствии скобок?

Если на одном уровне в порядке операций есть несколько операций, двигайтесь слева направо. вы работаете так: сначала обратите внимание, что нет скобок или экспонентов , поэтому мы переходим к умножению и делению.… В скобках следует соблюдать порядок операций.

Используют ли калькуляторы Pemdas?

Как правило, если вы можете ввести сразу целое выражение (включая скобки), тогда да . Все (или, по крайней мере, практически все) графические калькуляторы делают это, как и большинство научных калькуляторов.

Скобки исчезают после?

В уравнении с одной переменной, возведенной в первую степень, у вас будет только одно решение, а не два.При умножении вы можете умножать их в любом порядке, и это даст вам тот же ответ, поэтому вам не нужно сразу избавляться от скобок или сохранять их .

Вы умножаете числа в скобках?

Умножение. Первый способ говорит нам умножать. Когда мы видим вместе два или более числа, разделенных скобками, то скобки говорят нам умножать . Например, когда мы видим 5(2), круглые скобки говорят нам умножить 5 и 2 вместе.

Какие операции идут первыми скобки или круглые скобки?

Порядок операций сообщает нам порядок решения шагов в выражениях с более чем одной операцией. Сначала решаем любые операции внутри круглых скобок или скобок . Во-вторых, мы решаем любые показатели. В-третьих, мы решаем все умножение и деление слева направо.

Это 16 или 1?

Некоторые люди получили 16 в качестве ответа, а некоторые люди получили 1.Путаница связана с разницей между современной и исторической интерпретациями порядка операций. Правильный ответ сегодня — 16. Ответ 1 был бы правильным 100 лет назад.

Почему Бодмас не прав?

Неправильный ответ

Его буквы обозначают Скобки, Порядок (значение полномочий), Деление, Умножение, Сложение, Вычитание. … Он не содержит скобок, степеней, деления или умножения, поэтому мы будем следовать BODMAS и делать сложение, за которым следует вычитание : это ошибочно.

Каков порядок операций при отсутствии скобок?

Поскольку круглые скобки и показатели степени отсутствуют, начните с умножения, а затем деления, работая слева направо . … ПРИМЕЧАНИЕ. Следует отметить, что, несмотря на то, что умножение в PEMDAS предшествует делению, тем не менее, операция всегда выполняется слева направо.

Всегда ли сначала идет умножение?

Порядок операций говорит вам сначала выполнить умножение и деление , работая слева направо, прежде чем выполнять сложение и вычитание.… Далее складываем и вычитаем слева направо. (Обратите внимание, что сложение не обязательно выполняется перед вычитанием.)

Вы сначала умножаете, если нет скобок?

Поскольку в нет скобок и показателей степени, начните с умножения, а затем деления, работая слева направо.

Какое правило решения уравнений?

Следующие шаги представляют собой хороший метод для решения линейных уравнений. Упростите каждую часть уравнения, удалив скобки и объединив одинаковые члены.Используйте сложение или вычитание, чтобы изолировать переменный член на одной стороне уравнения. Используйте умножение или деление, чтобы найти переменную.

Каковы 4 шага решения уравнения?

У нас есть 4 способа решения одношаговых уравнений: Сложение, вычитание, умножение и деление . Если мы прибавим одно и то же число к обеим частям уравнения, обе стороны останутся равными.

Каков порядок операций в уравнении?

Порядок операций следующий: круглые скобки, показатели степени, умножение, деление, сложение, вычитание (PEMDAS) .Теперь, когда скобки вычислены, нам нужно умножить.

Скобки означают умножение? – М.В.Организинг

Скобки означают умножение?

Первый способ говорит нам умножать. Когда мы видим два или более числа вместе, разделенных скобками, тогда скобки говорят нам умножать. Когда мы работаем со скобками, мы можем оставить первое или последнее число без скобок или за их пределами.Это по-прежнему означает умножение.

Как называется символ умножения?

Знак умножения, также известный как знак времени или знак размера, представляет собой символ ×, используемый в математике для обозначения операции умножения и ее результата. Хотя эта форма похожа на строчную букву X (x), она представляет собой четырехкратную вращательно-симметричную сальтиру.

Что означают скобки в уравнении?

Скобки используются для ясности в порядке операций, в котором несколько операций должны выполняться в математическом выражении.В этом примере круглые скобки говорят вам сделать что-то отличное от обычного порядка операций. В других случаях они просто используются для визуальной ясности.

В чем разница между квадратными и круглыми скобками в математике?

Круглые скобки ( или ) используются для обозначения того, что значение конечной точки не включено, что называется эксклюзивным. Скобки [ или ] используются для указания того, что значение конечной точки включено, что называется включением.

Как решать математические уравнения со скобками?

Если в уравнении, которое вам нужно решить, есть скобки, упростите скобки (чаще всего с помощью распределения), а затем решите, как обычно.Максимально упростите обе части уравнения, используя порядок операций (распределить, объединить одинаковые члены и т. д.).

Как называются скобки?

Конкретные формы знака включают закругленные скобки (также называемые скобками), квадратные скобки, фигурные скобки (также называемые фигурными скобками) и угловые скобки (также называемые шевронами), а также различные менее распространенные пары символов.

Как правильно использовать скобки?

Скобки (круглые скобки) — это знаки препинания, используемые в предложении для включения информации, которая не является существенной для основной мысли.Информация в скобках обычно является дополнительной; если бы он был удален, смысл предложения остался бы неизменным. Заинтригован?

Как узнать, когда использовать скобки или квадратные скобки?

Используйте скобки (иногда называемые квадратными скобками), чтобы указать, что конечная точка включена в интервал, и скобки (иногда называемые круглыми скобками), чтобы указать, что это не так. скобки подобны строгим неравенствам. (3,7) включает 3.1 и 3.007 и 3., но не включает 3.

Сколько типов скобок существует?

четыре типа

Как узнать, когда ставить скобки или круглые скобки?

Скобка используется, когда точка или значение не включены в интервал, и скобка используется, когда значение включено. Например, интервал [1,6) относится к набору всех действительных чисел от 1 до 6, включая 1, но не включая 6.

Что такое скобки?

Скобки — это символы, которые мы используем для содержания «дополнительной информации» или информации, не являющейся частью основного содержания.Скобки всегда идут парами — «открывающая» скобка перед дополнительной информацией и «закрывающая» скобка после нее. Существует два основных типа скобок: круглая () и квадратная [].

Как написать уравнение без скобок?

Вы хотите упростить, написав эквивалентное выражение без круглых скобок. Во-первых, умножьте 3 на каждое из условий в скобках. Затем упростите каждую часть выражения, а затем вычтите. Ответ: 3(3−2)=3.

Вы складываете или умножаете сначала, если нет круглых скобок?

Если на одном уровне в порядке операций есть несколько операций, двигайтесь слева направо.вы работаете так: сначала обратите внимание, что здесь нет скобок или экспонент, поэтому мы переходим к умножению и делению. Есть только одно умножение, поэтому мы делаем его первым и в итоге получаем 9 – 5 + 2.

Как делать скобки?

Правило 1. Используйте круглые скобки для заключения информации, которая поясняет или используется в качестве отступления. Пример: В конце концов он ответил (после пятиминутного размышления), что не понял вопроса. Если материал в скобках завершает предложение, точка ставится после скобок.

Может ли целое предложение быть заключено в круглые скобки?

Круглые скобки (всегда используются парами) позволяют автору предоставить дополнительную информацию. Вводной материал может быть одним словом, фрагментом или несколькими полными предложениями. Каким бы ни был материал в скобках, он не должен быть грамматически неотъемлемой частью окружающего предложения.

Каков математический порядок операций без круглых скобок? – МаллОверВещи

Каков математический порядок операций без скобок?

Порядок операций можно запомнить по аббревиатуре PEMDAS, которая означает: круглые скобки, показатели степени, умножение и деление слева направо, сложение и вычитание слева направо.Здесь нет круглых скобок или показателей степени, поэтому начните с умножения и деления слева направо.

Как решить математическую задачу без скобок?

Поскольку круглые скобки и показатели степени отсутствуют, начните с умножения, а затем деления, работая слева направо. Закончить операцию сложением. ПРИМЕЧАНИЕ. Следует отметить, что, несмотря на то, что умножение в PEMDAS предшествует делению, тем не менее, эти два действия всегда выполняются слева направо.

Используете ли вы порядок операций, когда нет скобок?

Если на одном уровне в порядке операций есть несколько операций, двигайтесь слева направо.вы работаете так: сначала обратите внимание, что здесь нет скобок или экспонент, поэтому мы переходим к умножению и делению. Внутри набора скобок следует соблюдать порядок операций.

Используете ли вы Pemdas Если нет скобок?

Без круглых скобок правила PEMDAS подразумевают, что вы должны сначала выполнить деление. Со скобками 3x теперь становится группой. Технически умножение должно происходить перед делением (но вы все равно можете делать алгебраические упрощения, например, отменять общий множитель).

Вы умножаете перед добавлением, если нет скобок?

Поскольку 4 × 4 = 16 , и после того, как скобок не осталось, мы выполняем умножение перед сложением. Этот набор скобок дает еще один ответ. Итак, когда задействованы круглые скобки, правила порядка операций таковы: Выполняйте операции в круглых скобках или группируйте символы.

Что на первом месте умножение или деление?

ПРИМЕЧАНИЕ. Несмотря на то, что в PEMDAS умножение стоит перед делением, они выполняются на одном шаге слева направо.Сложение и вычитание также выполняются на одном шаге.

Сначала делить или умножать?

Порядок операций говорит вам сначала выполнить умножение и деление слева направо, прежде чем выполнять сложение и вычитание. Продолжайте выполнять умножение и деление слева направо. Далее складываем и вычитаем слева направо.

Узнайте больше о степенях, скобках и знаках

В этой записи мы узнаем о важности круглых скобок при выполнении вычислений со знаками (отрицательными) в степенях.

Все мы знаем, что умножение — это сокращенная форма записи повторяющейся суммы. Например, 2 + 2 + 2 + 2 + 2 проще записать как 2 x 5.

Таким же образом мы используем степени для выражения умножения числа на себя несколько раз более сокращенным способом. Например, 2 x 2 x 2 можно выразить как 2³.

Прежде всего, давайте быстро рассмотрим элементы силы.

Элементы силы

Степени формируются основанием и показателем степени, как показано на следующем рисунке.Основание – это число, которое умножается несколько раз. Показатель степени — это количество раз, когда умножается основание.

После небольшого обзора элементов силы давайте перейдем к делу. Скобки в отрицательных основных степенях очень важны. Мы должны помнить о них, когда приступаем к операциям. Часто они являются причинами ошибок, которые приводят нас к ошибочным решениям.

Давайте посмотрим на разницу между (-5)² и -5²

Если основание находится в скобках, как в нашем первом случае, показатель степени влияет на все, что находится внутри скобки, то есть на знак и число.

Однако, если основание не указано в скобках, как во втором случае, показатель степени влияет только на непосредственное значение слева, то есть только на число без знака.

Как видите, пара скобок может полностью изменить результат.

Давайте посмотрим еще несколько примеров работы со скобками в полномочиях.

Полномочия: Пример 1


Полномочия: Пример 2


Это может показаться запутанным, и для того, чтобы привыкнуть к вычислениям, требуется немного практики, но это не сложно, поэтому я призываю вас начать Smartick и практиковать этот предмет среди многих других предметов математики в начальной школе.

Надеюсь, это помогло вам. И не забывайте о важности скобок!

Узнать больше:

Веселье — любимый способ обучения нашего мозга

Дайан Акерман

Smartick — увлекательный способ изучения математики
  • 15 минут веселья в день
  • Адаптируется к уровню вашего ребенка
  • Миллионы учеников с 2009 года

Группа создания контента.
Мультидисциплинарная и мультикультурная команда, состоящая из математиков, учителей, профессоров и других специалистов в области образования!
Они стремятся создать наилучший математический контент.

admin

Добавить комментарий

Ваш адрес email не будет опубликован.