Сложение дробей на целое число: Как к дроби прибавить целое число?

Содержание

Правила сложения дробей. Сложение дробей с целыми числами и разными знаменателями

Рассмотрим дробь $\frac63$. Ее величина равна 2, так как $\frac63 =6:3 = 2$. А что произойдет, если числитель и знаменатель умножить на 2? $\frac63 \times 2=\frac{12}{6}$. Очевидно, величина дроби не изменилась, так $\frac{12}{6}$ как у также равно 2. Можно умножить числитель и знаменатель на 3 и получить $\frac{18}{9}$, или на 27 и получить $\frac{162}{81}$ или на 101 и получить $\frac{606}{303}$. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби $\frac{120}{60}$ (равной 2) разделить на 2 (результат $\frac{60}{30}$), или на 3 (результат $\frac{40}{20}$), или на 4 (результат $\frac{30}{15}$) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны

целому числу .

Если числитель и знаменатель дроби $\frac{1}{3}$ умножить на 2, мы получим $\frac{2}{6}$, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа $\frac{1}{3}$ и $\frac{2}{6}$ идентичны. Сформулируем общее правило.

Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется.

Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.

Например, мы можем разделить числитель и знаменатель дроби $\frac{126}{189}$ на 63 и получить дробь $\frac{2}{3}$ с которой гораздо проще производить расчеты. Еще один пример. Числитель и знаменатель дроби $\frac{155}{31}$ можем разделить на 31 и получить дробь $\frac{5}{1}$ или 5, поскольку 5:1=5.

В этом примере мы впервые встретились с дробью, знаменатель которой равен 1 . Такие дроби играют важную роль при вычислениях. Следует помнить, что любое число можно разделить на 1 и при этом его величина не изменится. То есть $\frac{273}{1}$ равно 273; $\frac{509993}{1}$ равно 509993 и так далее. Следовательно, мы можем не разделять числа на , поскольку каждое целое число можно представить в виде дроби со знаменателем 1.

С такими дробями, знаменатель которых равен 1, можно производить те же арифметические действия, что и со всеми остальными дробями: $\frac{15}{1}+\frac{15}{1}=\frac{30}{1}$, $\frac{4}{1} \times \frac{3}{1}=\frac{12}{1}$.

Вы можете спросить, какой прок от того, что мы представим целое число в виде дроби, у которой под чертой будет стоять единица, ведь с целым числом работать удобнее. Но дело в том, что представление целого числа в виде дроби дает нам возможность эффективнее производить различные действия, когда мы имеем дело одновременно и с целыми, и с дробными числами. Например, чтобы научится

складывать дроби с разными знаменателями . Предположим, нам надо сложить $\frac{1}{3}$ и $\frac{1}{5}$.

Мы знаем, что складывать можно только те дроби, знаменатели которых равны. Значит, нам нужно научиться приводить дроби к такому виду, когда их знаменатели равны. В этом случае нам опять пригодится то, что можно умножать числитель и знаменатель дроби на одно и то же число без изменения ее величины.

Сначала умножим числитель и знаменатель дроби $\frac{1}{3}$ на 5. Получим $\frac{5}{15}$, величина дроби не изменилась. Затем умножим числитель и знаменатель дроби $\frac{1}{5}$ на 3. Получим $\frac{3}{15}$, опять величина дроби не изменилась. Следовательно, $\frac{1}{3}+\frac{1}{5}=\frac{5}{15}+\frac{3}{15}=\frac{8}{15}$.

Теперь попробуем применить эту систему к сложению чисел, содержащих как целую, так и дробную части.

Нам надо сложить $3 + \frac{1}{3}+1\frac{1}{4}$. Сначала переведем все слагаемые в форму дробей и получим: $\frac31 + \frac{1}{3}+\frac{5}{4}$. Теперь нам надо привести все дроби к общему знаменателю, для этого мы числитель и знаменатель первой дроби умножаем на 12, второй — на 4, а третьей — на 3. В результате получаем $\frac{36}{12} + \frac{4}{12}+\frac{15}{12}$, что равно $\frac{55}{12}$. Если вы хотите избавиться от

неправильной дроби , ее можно превратить в число, состоящее из целой и дробной частей: $\frac{55}{12} = \frac{48}{12}+\frac{7}{12}$ или $4\frac{7}{12}$.

Все правила, позволяющие проводить операции с дробями , которые мы с вами только что изучили, также справедливы и в случае отрицательных чисел. Так, -1: 3 можно записать как $\frac{-1}{3}$, а 1: (-3) как $\frac{1}{-3}$.

Поскольку как при делении отрицательного числа на положительное, так и при деле­нии положительного числа на отрицатель­ное в результате мы получаем отрицатель­ные числа, в обоих случаях мы получим ответ в виде отрицательного числа. То есть

$(-1) : 3 = \frac{1}{3}$ или $1: (-3) = \frac{1}{-3}$. Знак минус при таком написании относится ко всей дроби целиком, а не отдельно к числителю или знаменателю.

С другой стороны, (-1) : (-3) можно записать как $\frac{-1}{-3}$, а поскольку при деле­нии отрицательного числа на отрицатель­ное число мы получаем положительное число, то $\frac{-1}{-3}$ можно записать как $+\frac{1}{3}$.

Сложение и вычитание отрицательных дробей проводят по той же схеме, что и сложение, и вычитание положительных дро­бей. Например, что такое $1- 1\frac13$? Пред­ставим оба числа в виде дробей и получим $\frac{1}{1}-\frac{4}{3}$. Приведем дроби к общему знаменателю и получим $\frac{1 \times 3}{1 \times 3}-\frac{4}{3}$, то есть $\frac{3}{3}-\frac{4}{3}$, или $-\frac{1}{3}$.

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить без изменений.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Число, которое умножается на дробь, и знаменатель дроби разрешается , если они имеют общий делитель, бóльший единицы.

Например, выражение можно вычислить двумя способами.

Первый способ . Умножить число 4 на числитель дроби, а знаменатель дроби оставить без изменений:

Второй способ . Умножаемую четвёрку и четвёрку, находящуюся в знаменателе дроби , можно сократить. Сократить эти четвёрки можно на 4 , поскольку наибольший общий делитель для двух четвёрок есть сама четвёрка:

Получился тот же результат 3. После сокращения четвёрок, на их месте образуются новые числа: две единицы. Но перемножение единицы с тройкой, и далее деление на единицу ничего не меняет. Поэтому решение можно записать покороче:

Сокращение может быть выполнено даже тогда, когда мы решили воспользоваться первым способом, но на этапе перемножения числа 4 и числителя 3 решили воспользоваться сокращением:

А вот к примеру выражение можно вычислить только первым способом — умножить 7 на знаменатель дроби , а знаменатель оставить без изменений:

Связано это с тем, что число 7 и знаменатель дроби не имеют общего делителя, бóльшего единицы, и соответственно не сокращаются.

Некоторые ученики по ошибке сокращают умножаемое число и числитель дроби. Делать этого нельзя. Например, следующая запись не является правильной:

Сокращение дроби подразумевает, что и числитель и знаменатель будет разделён на одно и тоже число. В ситуации с выражением деление выполнено только в числителе, поскольку записать это всё равно, что записать . Видим, что деление выполнено только в числителе, а в знаменателе никакого деления не происходит.

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Одними из самых сложных для понимания школьника являются разные действия с простыми дробями. Это связано с тем, что детям еще сложно мыслить абстрактно, а дроби, по сути, для них именно так и выглядят. А потому, излагая материал, учителя часто прибегают к аналогиям и объясняют вычитание и сложение дробей буквально на пальцах. Хотя без правил и определений не обходится ни один урок школьной математики.

Базовые понятия

Прежде чем приступить к любым , желательно усвоить несколько базовых определений и правил. Изначально важно понимать, что такое дробь. Под ней подразумевается число, представляющее собой одну или несколько долей единицы. Например, если буханку разрезать на 8 частей и 3 ломтика из них выложить в тарелку, то 3/8 и будет дробью. Причем в таком написании это будет простой дробью, где число над чертой — это числитель, а под ней — знаменатель. А вот если ее записать как 0,375, это уже будет десятичная дробь.

К тому же простые дроби подразделяют на правильные, неправильные и смешанные. К первым относят все те, числитель которых меньше знаменателя. Если наоборот, знаменатель меньше числителя, это уже будет неправильная дробь. В случае если перед правильной стоит целое число, говорят о смешанных числах. Таким образом, дробь 1/2 — правильная, а 7/2 — нет. А если ее записать в таком виде: 3 1 / 2 , то она станет смешанной.

Чтобы легче было разобраться в том, что такое сложение дробей, и с легкостью его выполнять, важно еще запомнить Его суть в следующем. Если числитель и знаменатель умножить на одно и то же число, то дробь не изменится. Именно это свойство позволяет совершать простейшие действия с обыкновенными и другими дробями. По факту это означает, что 1/15 и 3/45, по сути, одно и то же число.

Сложение дробей с одинаковыми знаменателями

Выполнение этого действия обычно не вызывает больших затруднений. Сложение дробей в этом случае очень сильно напоминает подобное действие с целыми числами. Знаменатель остается без изменений, а числители просто складываются между собой. Например, если нужно сложить дроби 2/7 и 3/7, то решение школьной задачи в тетради будет вот таким:

2/7 + 3/7 = (2+3)/7 = 5/7.

К тому же такое сложение дробей можно объяснить на простом примере. Взять обычное яблоко и разрезать, например, на 8 частей. Выложить отдельно сначала 3 части, а затем добавить к ним еще 2. И в результате в чашке будет лежать 5/8 целого яблока. Саму арифметическую задачу записывают, как показано ниже:

3/8 + 2/8 = (3+2)/8 = 5/8.

Но зачастую встречаются задачи посложнее, где нужно сложить между собой, например, 5/9 и 3/5. Вот здесь и возникают первые сложности в действиях с дробями. Ведь сложение таких чисел потребует дополнительных знаний. Теперь в полной мере потребуется вспомнить об их основном свойстве. Чтобы сложить дроби из примера, для начала их нужно привести к одному общему знаменателю. Для этого необходимо просто перемножить 9 и 5 между собой, числитель «5» умножить на 5, а «3», соответственно, на 9. Таким образом, уже складываются такие дроби: 25/45 и 27/45. Теперь только осталось сложить числители и получить ответ 52/45. На листке бумаги пример будет выглядеть так:

5/9 + 3/5 = (5 х 5)/(9 х 5) + (3 х 9)/(5 х 9) = 25/45 + 27/45 = (25+27)/45 = 52/45 = 1 7 / 45 .

Но сложение дробей с такими знаменателями не всегда требует простого перемножения чисел под чертой. Сначала ищут наименьший общий знаменатель. К примеру, как для дробей 2/3 и 5/6. Для них это будет число 6. Но не всегда ответ очевиден. В этом случае стоит вспомнить правило поиска наименьшего общего кратного (сокращенно НОК) двух чисел.

Под ним понимают наименьший общий множитель двух целых чисел. Чтобы его найти, раскладывают каждое на простые множители. Теперь выписывают те из них, которые входят хотя бы один раз в каждое число. Перемножают их между собой и получают тот самый знаменатель. На деле все выглядит немного проще.

Например, требуется сложить дроби 4/15 и 1/6. Так, 15 получается перемножением простых цифр 3 и 5, а шесть — два и три. Значит, НОК для них будет 5 х 3 х 2 = 30. Теперь, разделив 30 на знаменатель первой дроби, получим множитель для ее числителя — 2. А для второй дроби это будет число 5. Таким образом, остается сложить обыкновенные дроби 8/30 и 5/30 и получить ответ 13/30. Все предельно просто. В тетради же следует эту задачу записать так:

4/15 + 1/6 = (4 х 2)/(15 х 2) + (1 х 5)/(6 х 5) = 8/30 + 5/30 = 13/30.

НОК (15, 6) = 30.

Сложение смешанных чисел

Теперь, зная все основные приемы в сложении простых дробей, можно попробовать свои силы на более сложных примерах. И это будут смешанные числа, под которыми понимают дробь такого вида: 2 2 / 3 . Здесь перед правильной дробью выписана целая часть. И многие путаются при совершении действий с такими числами. В действительности, здесь работают все те же правила.

Чтобы сложить между собой смешанные числа, отдельно складывают целые части и правильные дроби. А затем уже суммируют эти 2 результата. На практике все намного проще, стоит только немного поупражняться. Например, в задаче требуется сложить такие смешанные числа: 1 1 / 3 и 4 2 / 5 . Чтобы это сделать, сначала складываются 1 и 4 — получится 5. Затем суммируют 1/3 и 2/5, используя приемы приведения к наименьшему общему знаменателю. Решением будет 11/15. А окончательный ответ — это 5 11 / 15 . В школьной тетради это будет выглядеть гораздо короче:

1 1 / 3 + 4 2 / 5 = (1 + 4) + (1/3 + 2/5) = 5 + 5/15 + 6/15 = 5 + 11/15 = 5 11 / 15 .

Сложение десятичных дробей

Помимо обыкновенных дробей, есть и десятичные. Они, кстати, намного чаще встречаются в жизни. Например, цена в магазине выглядит часто таким образом: 20,3 рубля. Это и есть та самая дробь. Конечно, такие складывать намного проще, чем обыкновенные. В принципе, нужно просто сложить 2 обыкновенных числа, главное, в нужном месте поставить запятую. Вот тут и возникают сложности.

К примеру требуется сложить такие 2,5 и 0,56. Чтобы сделать это правильно, нужно к первой в конце дописать ноль, и все будет в порядке.

2,50 + 0,56 = 3,06.

Важно знать, что любая десятичная дробь может быть преобразована в простую, но не любую простую дробь можно записать как десятичную. Так, из нашего примера 2,5 = 2 1 / 2 и 0,56 = 14/25. А вот такая дробь, как 1/6, будет только приблизительно равна 0,16667. Такая же ситуация будет с другими подобными числами — 2/7, 1/9 и так далее.

Заключение

Многие школьники, не понимая практической стороны действий с дробями, относятся к этой теме спустя рукава. Однако в более эти базовые знания позволят щелкать как орешки сложные примеры с логарифмами и нахождением производных. А потому стоит один раз хорошо разобраться в действиях с дробями, чтобы потом не кусать от досады локти. Ведь вряд ли педагог в старших классах будет возвращаться к этой, уже пройденной, теме. Любой старшеклассник должен уметь выполнять подобные упражнения.

Сложение и вычитание дробей с одинаковыми знаменателями
Сложение и вычитание дробей с разными знаменателями
Понятие о НОК
Приведение дробей к одному знаменателю
Как сложить целое число и дробь

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

2 Сложение и вычитание дробей с разными знаменателями

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

4Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители . Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

5Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например.

Правила сложения дробей с разными знаменателями очень простые.

Рассмотрим правила сложения дробей с разными знаменателями по шагам:

1. Найти НОК (наименьшее общее кратное) знаменателей. Полученный НОК будет общим знаменателем дробей;

2. Привести дроби к общему знаменателю;

3. Сложить дроби, приведенные к общему знаменателю.

На простом примере научимся применять правила сложения дробей с разными знаменателями.

Пример

Пример сложения дробей с разными знаменателями.

Сложить дроби с разными знаменателями:

Будем решать по шагам.

1. Найти НОК (наименьшее общее кратное) знаменателей.

Число 12 делится на 6.

Отсюда делаем вывод, что 12 есть наименьшее общее кратное чисел 6 и 12.

Ответ: нок чисел 6 и 12 равен 12:

НОК(6, 12) = 12

Полученный НОК и будет общим знаменателем двух дробей 1/6 и 5/12.

2. Привести дроби к общему знаменателю.

В нашем примере привести к общему знаменателю 12 нужно только первую дробь, ведь у второй дроби знаменатель уже равен 12.

Разделим общий знаменатель 12 на знаменатель первой дроби:

2 есть дополнительный множитель.

Умножим числитель и знаменатель первой дроби (1/6) на дополнительный множитель 2.

Сложение и вычитание обыкновенных дробей и смешанных чисел

1. Сумма дробей с равными знаменателями 1 вид — рецептивный лёгкое 1 Б. Сумма дробей с равными знаменателями.
2. Разность дробей, равные знаменатели 1 вид — рецептивный лёгкое 1 Б. Результат — правильная дробь.
3. Сумма целого числа и обыкновенной дроби 1 вид — рецептивный лёгкое 1 Б. Сумма целого числа и обыкновенной дроби.
4. Разность (смешанное число и единица) 1 вид — рецептивный лёгкое 1 Б. Разность (смешанное число и единица).
5. Вычитание из 1 правильной дроби 1 вид — рецептивный среднее 2 Б. Представление 1 в виде неправильной дроби.
6. Вычитание из целого числа правильной дроби 2 вид — интерпретация среднее 3 Б. Вычитание из целого числа правильной дроби.
7. Вычитание дроби из смешанного числа 2 вид — интерпретация среднее 2 Б. Вычитание дроби из смешанного числа.
8. Сумма смешанных чисел, одинаковые знаменатели 2 вид — интерпретация среднее 3 Б. Сумма смешанных чисел, одинаковые знаменатели.
9. Вычитание смешанных чисел 2 вид — интерпретация среднее 2 Б. Вычитание смешанных чисел.
10. Сумма смешанного числа и обыкновенной дроби (одинаковые знаменатели) 2 вид — интерпретация среднее 2 Б. Сумма смешанного числа и обыкновенной дроби.
11. Уравнение (неизвестная дробь) 2 вид — интерпретация среднее 2 Б. Решение уравнения.
12. Уравнение (неизвестный числитель дроби) 2 вид — интерпретация среднее 3 Б. Решение уравнения.
13. Сумма дробей, разные знаменатели 2 вид — интерпретация среднее 2 Б. Оба знаменателя содержат одинаковый множитель. Привести к несократимой дроби.
14. Разность дробей, знаменатели — взаимно простые числа 2 вид — интерпретация среднее 2 Б. Знаменатели — взаимно простые числа до 10.
15. Разность дробей, один знаменатель содержит второй как множитель 2 вид — интерпретация среднее 2 Б. Общий знаменатель до 60.
16. Вычитание дробей, знаменатели — большие разные числа 2 вид — интерпретация среднее 3 Б. Каждый знаменатель содержит общий и свой множитель — большие числа.
17. Сумма смешанных чисел, разные знаменатели 2 вид — интерпретация среднее 3 Б. Оба знаменателя содержат общий множитель.
18. Разность смешанного числа и дроби, разные знаменатели 2 вид — интерпретация среднее 3 Б. Представление целого в виде неправильной дроби. Приведение к несократимой дроби. Оба знаменателя содержат общий множитель.
19. Разность смешанных чисел, разные знаменатели 2 вид — интерпретация среднее 4 Б. Оба знаменателя содержат общий множитель.
20. Уравнение 2 вид — интерпретация среднее 3 Б. Вычисление неизвестного, вычитание. Сокращение.
21. Неизвестное слагаемое. Смешанные числа, разные знаменатели 2 вид — интерпретация среднее 3 Б. Неизвестное слагаемое. Сокращение.
22. Разность смешанных чисел (усложнённый) 2 вид — интерпретация сложное 5,5 Б. Представление единицы в виде неправильной дроби. Оба знаменателя содержат общий множитель. Приведение к несократимой дроби.
23. Неизвестное вычитаемое. Смешанные числа, разные знаменатели 2 вид — интерпретация сложное 4 Б. Разные знаменатели, сокращение.

Вычитание правильной дроби из целого числа. Сложение и вычитание алгебраических дробей с разными знаменателями (основные правила, простейшие случаи)

Найдите числитель и знаменатель. Дробь включает два числа: число, которое расположено над чертой, называется числителем, а число, которое находится под чертой – знаменателем. Знаменатель обозначает общее количество частей, на которые разбито некоторое целое, а числитель – это рассматриваемое количество таких частей.

  • Например, в дроби ½ числителем является 1, а знаменателем 2.

Определите знаменатель. Если две и более дроби имеют общий знаменатель, у таких дробей под чертой находится одно и то же число, то есть в этом случае некоторое целое разбито на одинаковое количество частей. Складывать дроби с общим знаменателем очень просто, так как знаменатель суммарной дроби будет таким же, как у складываемых дробей. Например:

  • У дробей 3/5 и 2/5 общий знаменатель 5.
  • У дробей 3/8, 5/8, 17/8 общий знаменатель 8.
  • Определите числители. Чтобы сложить дроби с общим знаменателем, сложите их числители, а результат запишите над знаменателем складываемых дробей.

    • У дробей 3/5 и 2/5 числители 3 и 2.
    • У дробей 3/8, 5/8, 17/8 числители 3, 5, 17.
  • Сложите числители. В задаче 3/5 + 2/5 сложите числители 3 + 2 = 5. В задаче 3/8 + 5/8 + 17/8 сложите числители 3 + 5 + 17 = 25.

  • Запишите суммарную дробь. Помните, что при сложении дробей с общим знаменателем он остается без изменений – складываются только числители.

    • 3/5 + 2/5 = 5/5
    • 3/8 + 5/8 + 17/8 = 25/8
  • Если нужно, преобразуйте дробь. Иногда дробь можно записать в виде целого числа, а не обыкновенной или десятичной дроби. Например, дробь 5/5 легко преобразуется в 1, так как любая дробь, у которой числитель равен знаменателю, есть 1. Представьте пирог, разрезанный на три части. Если вы съедите все три части, то вы съедите целый (один) пирог.

    • Любую обыкновенную дробь можно преобразовать в десятичную; для этого разделите числитель на знаменатель. Например, дробь 5/8 можно записать так: 5 ÷ 8 = 0,625.
  • Если возможно, упростите дробь. Упрощенная дробь – эта дробь, числитель и знаменатель которой не имеют общих делителей.

    • Например, рассмотрим дробь 3/6. Здесь и у числителя, и у знаменателя есть общий делитель, равный 3, то есть числитель и знаменатель нацело делятся на 3. Поэтому дробь 3/6 можно записать так: 3 ÷ 3/6 ÷ 3 = ½.
  • Если нужно, преобразуйте неправильную дробь в смешанную дробь (смешанное число). У неправильной дроби числитель больше знаменателя, например, 25/8 (у правильной дроби числитель меньше знаменателя). Неправильную дробь можно преобразовать в смешанную дробь, которая состоит из целой части (то есть целого числа) и дробной части (то есть правильной дроби). Чтобы преобразовать неправильную дробь, например, 25/8, в смешанное число, выполните следующие действия:

    • Разделите числитель неправильной дроби на ее знаменатель; запишите неполное частное (целый ответ). В нашем примере: 25 ÷ 8 = 3 плюс некоторый остаток. В данном случае целый ответ – это целая часть смешанного числа.
    • Найдите остаток. В нашем примере: 8 х 3 = 24; полученный результат вычтите из исходного числителя: 25 — 24 = 1, то есть остаток равен 1. В данном случае остаток – это числитель дробной части смешанного числа.
    • Запишите смешанную дробь. Знаменатель не меняется (то есть равен знаменателю неправильной дроби), поэтому 25/8 = 3 1/8.
  • Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

    Вычитание дробей с одинаковыми знаменателями, примеры:

    ,

    ,

    Вычитание правильной дроби из единицы.

    Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

    Пример вычитания правильной дроби из единицы:

    Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

    Вычитание правильной дроби из целого числа.

    Правила вычитания дробей — правильной из целого числа (натурального числа) :

    • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
    • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
    • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби — выделяем в дроби целую часть.

    Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

    Пример вычитания дробей:

    В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

    Вычитание дробей с разными знаменателями.

    Или, если сказать другими словами, вычитание разных дробей .

    Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

    Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

    Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

    Порядок действий при вычитании дробей с разными знаменателями.

    • найти НОК для всех знаменателей;
    • поставить для всех дробей дополнительные множители;
    • умножить все числители на дополнительный множитель;
    • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
    • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

    Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

    Вычитание дробей, примеры:

    Вычитание смешанных дробей.

    При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

    Первый вариант вычитания смешанных дробей.

    Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

    Например:

    Второй вариант вычитания смешанных дробей.

    Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

    Например:

    Третий вариант вычитания смешанных дробей.

    Дробная часть уменьшаемого меньше дробной части вычитаемого.

    Пример:

    Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

    Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

    В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

    Одной из важнейших наук, применение которой можно увидеть в таких дисциплинах, как химия, физика и даже биология, является математика. Изучение этой науки позволяет развить некоторые умственные качества, улучшить и способность концентрироваться. Одна из тем, которые заслуживают отдельного внимания в курсе «Математика» — сложение и вычитание дробей. У многих учеников ее изучение вызывает затруднение. Возможно, наша статья поможет лучше понять эту тему.

    Как вычесть дроби, знаменатели которых одинаковые

    Дроби — это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:

    • Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m — b/m = (k-b)/m.

    Примеры вычитания дробей, знаменатели которых одинаковы

    7/19 — 3/19 = (7 — 3)/19 = 4/19.

    От числителя уменьшаемой дроби «7» отнимаем числитель вычитаемой дроби «3», получаем «4». Это число мы записываем в числитель ответа, а в знаменатель ставим то же число, что было в знаменателях первой и второй дроби — «19».

    На картинке ниже приведено еще несколько подобных примеров.

    Рассмотрим более сложный пример, где произведено вычитание дробей с одинаковыми знаменателями:

    29/47 — 3/47 — 8/47 — 2/47 — 7/47 = (29 — 3 — 8 — 2 — 7)/47 = 9/47.

    От числителя уменьшаемой дроби «29» отниманием по очереди числители всех последующих дробей — «3», «8», «2», «7». В итоге получаем результат «9», который записываем в числитель ответа, а в знаменатель записываем то число, которое находится в знаменателях всех этих дробей, — «47».

    Сложение дробей, имеющих одинаковый знаменатель

    Сложение и вычитание обыкновенных дробей осуществляется по одному и тому же принципу.

    • Для того чтобы сложить дроби, знаменатели которых одинаковы, необходимо числители сложить. Полученное число — числитель суммы, а знаменатель останется тот же: k/m + b/m = (k + b)/m.

    Рассмотрим, как это выглядит на примере:

    1/4 + 2/4 = 3/4.

    К числителю первой слагаемой дроби — «1» — добавляем числитель второй слагаемой дроби — «2». Результат — «3» — записываем в числитель суммы, а знаменатель оставляем тот же, что присутствовал в дробях, — «4».

    Дроби с различными знаменателями и их вычитание

    Действие с дробями, которые имеют одинаковый знаменатель, мы уже рассмотрели. Как видим, зная простые правила, решить подобные примеры достаточно легко. Но что делать, если необходимо произвести действие с дробями, которые имеют различные знаменатели? Многие учащиеся средних школ приходят в затруднение перед такими примерами. Но и здесь, если знать принцип решения, примеры уже не будут представлять для вас сложности. Здесь также существует правило, без которого решение подобных дробей просто невозможно.

      Чтобы произвести вычитание дробей с разными знаменателями, необходимо их привести к одинаковому наименьшему знаменателю.

      О том, как это сделать, мы поговорим подробнее.

      Свойство дроби

      Для того чтобы несколько дробей привести к одинаковому знаменателю, нужно использовать в решении главное свойство дроби: после деления или умножения числителя и знаменателя на одинаковое число получится дробь, равная данной.

      Так, например, дробь 2/3 может иметь такие знаменатели, как «6», «9», «12» и т. д., то есть она может иметь вид любого числа, которое кратно «3». После того как числитель и знаменатель мы умножим на «2», получится дробь 4/6. После того как числитель и знаменатель исходной дроби мы умножим на «3», получим 6/9, а если аналогичное действие произвести с цифрой «4», получим 8/12. Одним равенством это можно записать так:

      2/3 = 4/6 = 6/9 = 8/12…

      Как привести несколько дробей к одному и тому же знаменателю

      Рассмотрим, как привести несколько дробей к одному и тому же знаменателю. Для примера возьмем дроби, приведенные на картинке ниже. Для начала необходимо определить, какое число может стать знаменателем для их всех. Для облегчения разложим имеющиеся знаменатели на множители.

      Знаменатель дроби 1/2 и дроби 2/3 на множители разложить нельзя. Знаменатель 7/9 имеет два множителя 7/9 = 7/(3 х 3), знаменатель дроби 5/6 = 5/(2 х 3). Теперь необходимо определить, какие же множители будут наименьшими для всех этих четырех дробей. Так как в первой дроби в знаменателе имеется число «2», значит, оно должно присутствовать во всех знаменателях, в дроби 7/9 присутствуют две тройки, значит, они также обе должны присутствовать в знаменателе. Учитывая вышесказанное, определяем, что знаменатель состоит из трех множителей: 3, 2, 3 и равен 3 х 2 х 3 = 18.

      Рассмотрим первую дробь — 1/2. В ее знаменателе имеется «2», но нет ни одной цифры «3», а должно быть две. Для этого мы знаменатель умножаем на две тройки, но, согласно свойству дроби, мы и числитель должны умножить на две тройки:
      1/2 = (1 х 3 х 3)/(2 х 3 х 3) = 9/18.

      Аналогично производим действия с оставшимися дробями.

      • 2/3 — в знаменателе не хватает одной тройки и одной двойки:
        2/3 = (2 х 3 х 2)/(3 х 3 х 2) = 12/18.
      • 7/9 или 7/(3 х 3) — в знаменателе не хватает двойки:
        7/9 = (7 х 2)/(9 х 2) = 14/18.
      • 5/6 или 5/(2 х 3) — в знаменателе не хватает тройки:
        5/6 = (5 х 3)/(6 х 3) = 15/18.

      Все вместе это выглядит так:

      Как вычесть и сложить дроби, имеющие различные знаменатели

      Как уже говорилось выше, для того чтобы произвести сложение или вычитание дробей, имеющих различные знаменатели, их необходимо привести к одному знаменателю, а дальше воспользоваться правилами вычитания дробей, имеющих одинаковый знаменатель, о котором уже рассказывалось.

      Рассмотрим это на примере: 4/18 — 3/15.

      Находим кратное чисел 18 и 15:

      • Число 18 состоит из 3 х 2 х 3.
      • Число 15 состоит из 5 х 3.
      • Общее кратное будет состоять из следующих множителей 5 х 3 х 3 х 2 = 90.

      После того как знаменатель будет найден, необходимо вычислить множитель, который будет отличным для каждой дроби, то есть то число, на которое необходимо будет умножить не только знаменатель, но и числитель. Для этого число, которое мы нашли (общее кратное), делим на знаменатель той дроби, у которой нужно определить дополнительные множители.

      • 90 поделить на 15. Полученное число «6» будет множителем для 3/15.
      • 90 поделить на 18. Полученное число «5» будет множителем для 4/18.

      Следующий этап нашего решения — приведение каждой дроби к знаменателю «90».

      Как это делается, мы уже говорили. Рассмотрим, как это записывается в примере:

      (4 х 5)/(18 х 5) — (3 х 6)/(15 х 6) = 20/90 — 18/90 = 2/90 = 1/45.

      Если дроби с маленькими числами, то можно общий знаменатель определить, как в примере, приведенном на картинке ниже.

      Аналогично производится и имеющих различные знаменатели.

      Вычитание и имеющих целые части

      Вычитание дробей и их сложение мы уже детально разобрали. Но как произвести вычитание, если у дроби есть целая часть? Опять же, воспользуемся несколькими правилами:

      • Все дроби, имеющие целую часть, перевести в неправильные. Говоря простыми словами, убрать целую часть. Для этого число целой части умножаем на знаменатель дроби, полученное произведение добавляем к числителю. То число, которое получится после этих действий, — числитель неправильной дроби. Знаменатель же остается неизменным.
      • Если дроби имеют различные знаменатели, следует привести их к одинаковому.
      • Произвести сложение или вычитание с одинаковыми знаменателями.
      • При получении неправильной дроби выделить целую часть.

      Есть и иной способ, при помощи которого можно осуществить сложение и вычитание дробей с целыми частями. Для этого производятся отдельно действия с целыми частями, и отдельно действия с дробями, а результаты записываются вместе.

      Приведенный пример состоит из дробей, которые имеют одинаковый знаменатель. В том случае, когда знаменатели различны, их необходимо привести к одинаковому, а далее выполнить действия, как показано на примере.

      Вычитание дробей из целого числа

      Еще одной из разновидностей действий с дробями является тот случай, когда дробь необходимо отнять от На первый взгляд подобный пример кажется трудно решаемым. Однако здесь все довольно просто. Для его решения необходимо перевести целое число в дробь, причем с таким знаменателем, который имеется в вычитаемой дроби. Далее производим вычитание, аналогичное вычитанию с одинаковыми знаменателями. На примере это выглядит так:

      7 — 4/9 = (7 х 9)/9 — 4/9 = 53/9 — 4/9 = 49/9.

      Приведенное в этой статье вычитание дробей (6 класс) является основой для решения более сложных примеров, которые рассматриваются в последующих классах. Знания этой темы используются впоследствии для решения функций, производных и так далее. Поэтому очень важно разобраться и понять действия с дробями, рассматриваемые выше.

    Содержание урока

    Сложение дробей с одинаковыми знаменателями

    Сложение дробей бывает двух видов:

    1. Сложение дробей с одинаковыми знаменателями
    2. Сложение дробей с разными знаменателями

    Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

    Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

    Пример 2. Сложить дроби и .

    В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

    Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

    Пример 3 . Сложить дроби и .

    Опять же складываем числители, а знаменатель оставляем без изменения:

    Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

    Пример 4. Найти значение выражения

    Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

    Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

    Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

    1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

    Сложение дробей с разными знаменателями

    Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

    Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

    А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

    Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

    Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

    Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

    Пример 1 . Сложим дроби и

    В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

    НОК (2 и 3) = 6

    Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

    Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

    Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

    Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

    Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

    Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

    Таким образом, пример завершается. К прибавить получается .

    Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

    Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

    Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

    Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

    Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

    Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

    1. Найти НОК знаменателей дробей;
    2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
    3. Умножить числители и знаменатели дробей на свои дополнительные множители;
    4. Сложить дроби, у которых одинаковые знаменатели;
    5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

    Пример 2. Найти значение выражения .

    Воспользуемся инструкцией, которая приведена выше.

    Шаг 1. Найти НОК знаменателей дробей

    Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

    Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

    Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

    Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

    Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

    Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

    Умножаем числители и знаменатели на свои дополнительные множители:

    Шаг 4. Сложить дроби у которых одинаковые знаменатели

    Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

    Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

    Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

    У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

    Получили ответ

    Вычитание дробей с одинаковыми знаменателями

    Вычитание дробей бывает двух видов:

    1. Вычитание дробей с одинаковыми знаменателями
    2. Вычитание дробей с разными знаменателями

    Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

    Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

    Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

    Пример 2. Найти значение выражения .

    Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

    Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

    Пример 3. Найти значение выражения

    Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

    Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

    1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
    2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

    Вычитание дробей с разными знаменателями

    Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

    Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

    Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

    Пример 1. Найти значение выражения:

    У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

    Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

    НОК (3 и 4) = 12

    Теперь возвращаемся к дробям и

    Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

    Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

    Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

    Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

    Получили ответ

    Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

    Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

    Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

    Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

    Пример 2. Найти значение выражения

    У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

    Найдём НОК знаменателей этих дробей.

    Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

    НОК (10, 3, 5) = 30

    Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

    Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

    Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

    Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

    Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

    Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

    Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

    В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

    Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

    Итак, находим НОД чисел 20 и 30:

    Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

    Получили ответ

    Умножение дроби на число

    Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить прежним.

    Пример 1 . Умножить дробь на число 1 .

    Умножим числитель дроби на число 1

    Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

    Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

    Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

    Пример 2 . Найти значение выражения

    Умножим числитель дроби на 4

    В ответе получилась неправильная дробь. Выделим в ней целую часть:

    Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

    А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

    Умножение дробей

    Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

    Пример 1. Найти значение выражения .

    Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

    Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

    Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

    И взять от этих трех кусочков два:

    У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

    Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

    Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

    Пример 2 . Найти значение выражения

    Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

    В ответе получилась неправильная дробь. Выделим в ней целую часть:

    Пример 3. Найти значение выражения

    Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

    В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

    Итак, найдём НОД чисел 105 и 450:

    Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

    Представление целого числа в виде дроби

    Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

    Обратные числа

    Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

    Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

    Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

    Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

    Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

    Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

    Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

    Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

    Обратное число можно найти также для любого другого целого числа.

    Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

    Деление дроби на число

    Допустим, у нас имеется половина пиццы:

    Разделим её поровну на двоих. Сколько пиццы достанется каждому?

    Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

    Деление дробей выполняется с помощью обратных чисел. Обратные числа позволяют заменить деление умножением.

    Чтобы разделить дробь на число, нужно эту дробь умножить на число, обратное делителю.

    Пользуясь этим правилом, запишем деление нашей половины пиццы на две части.

    Итак, требуется разделить дробь на число 2 . Здесь делимым является дробь , а делителем число 2.

    Чтобы разделить дробь на число 2, нужно эту дробь умножить на число, обратное делителю 2. Обратное делителю 2 это дробь . Значит нужно умножить на

    Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

    Вычитание дробей с одинаковыми знаменателями, примеры:

    ,

    ,

    Вычитание правильной дроби из единицы.

    Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

    Пример вычитания правильной дроби из единицы:

    Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

    Вычитание правильной дроби из целого числа.

    Правила вычитания дробей — правильной из целого числа (натурального числа) :

    • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
    • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
    • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби — выделяем в дроби целую часть.

    Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

    Пример вычитания дробей:

    В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

    Вычитание дробей с разными знаменателями.

    Или, если сказать другими словами, вычитание разных дробей .

    Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

    Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

    Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

    Порядок действий при вычитании дробей с разными знаменателями.

    • найти НОК для всех знаменателей;
    • поставить для всех дробей дополнительные множители;
    • умножить все числители на дополнительный множитель;
    • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
    • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

    Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

    Вычитание дробей, примеры:

    Вычитание смешанных дробей.

    При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

    Первый вариант вычитания смешанных дробей.

    Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

    Например:

    Второй вариант вычитания смешанных дробей.

    Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

    Например:

    Третий вариант вычитания смешанных дробей.

    Дробная часть уменьшаемого меньше дробной части вычитаемого.

    Пример:

    Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

    Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

    В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

    В созданном кассе Fraction, добавить сложение, вычитание, умножение дроби с целым числом? | АйТиФай

    Есть класс дробей, необходимо добавить функцию сложения, вычитания, умножения? Есть несколько вариантов, но они не работают. Может кто-то подскажетБ что еще можно сделать?
    Сам класс:
    class Fraction:

    def __init__(self, num, denom):
    self.num = num
    self.denom = denom

    def __str__(self):
    return str(self.num)+’/’+str(self.denom)

    def __add__(self, other):
    newnum = self.num * other.denom + other.num * self.denom
    newdenom = self.denom * other.denom
    common = gcd(newnum, newdenom)
    return Fraction(newnum//common, newdenom//common)

    def __sub__(self, other):
    newnum = self.num * other.denom — other.num * self.denom
    newdenom = self.denom * other.denom
    common = gcd(newnum, newdenom)
    return Fraction(newnum//common, newdenom//common)

    def __mul__(self, other):
    newnum = self.num * other.num
    newdenom = self.denom * other.denom
    common = gcd(newnum, newdenom)
    return Fraction(newnum//common, newdenom//common)

    if __name__ == «__main__»:

    f1 = Fraction(11,6)
    f2 = Fraction(2,9)
    print(f1+f2)
    print(f1 — f2)
    print(f1 * f2)

    Варианты:
    1.
    def __add__(self, other):

    if isinstance(other, (int, Fraction)):
    return Fraction(self.num * other.denom +
    other.num * self.denom,
    self.denom * other.denom)

    elif isinstance(other, float):
    return float(self) + other
    elif isinstance(other, complex):
    return complex(self) + other

    return NotImplemented
    2.
    def __add__(self,other): #попыткас целым числом
    # является ли первый параметр сложения дробью

    if not isinstance(self, Fraction):
    return NotImplemented
    # является ли второй параметр сложения дробью
    if isinstance(other, Fraction):
    self.num = other.num
    self.denom = other.denom
    # является ли второй параметр сложения целым числом
    elif isinstance(other, int):
    self.num = other
    self.denom = 1
    # является ли второй параметр сложения чем-то другим
    else:
    return NotImplemented

    newnum = self.num * other.denom + other.num * self.denom
    newdenom = self.denom * self.denom
    common = gcd(newnum, newdenom)
    return Fraction(newnum//common, newdenom//common)

    выполните сложение дробей

    Вы искали выполните сложение дробей? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и выполнить сложение дробей, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «выполните сложение дробей».

    Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как выполните сложение дробей,выполнить сложение дробей,выполнить сложение и вычитание дробей,вычитание и сложение дробных чисел,дроби с плюсом как решать,дробные числа как складывать,как дроби складывать с целыми числами,как дробь сложить с целым числом,как найти сумму дробей с разными знаменателями,как прибавить дробь на дробь,как решать дроби на сложение с разными знаменателями,как решать дроби с разными знаменателями на сложение,как решать сложение дробей с разными знаменателями,как решить сложение дробей с разными знаменателями,как складывать дроби и целое число,как складывать дроби с разными знаменателями и целыми числами,как складывать дроби с разными знаменателями с целыми числами,как складывать дроби с целым числом,как складывать дроби с целыми числами,как складывать дроби с целыми числами и разными знаменателями,как складывать смешанные дроби с разными знаменателями,как складывать целое число с дробью,как складывать целые числа с дробями,как сложить дроби с разными знаменателями и числителями,как сложить дроби с целым числом,как сложить дробь и целое число,как сложить дробь и число,как сложить дробь с целым числом,как сложить с дробь с целым числом,как сложить смешанные дроби,как сложить целое число и дробь,как сложить целое число с дробью,как сложить число и дробь,как сложить число с дробью,как целое число складывать с дробью,как целое число сложить с дробью,как целые числа складывать с дробями,как число сложить с дробью,правила вычитание и сложение дробей,правила дробей сложение,правила дробей сложение и вычитание,правила сложение дробей,правила сложение и вычитание дробей,правила сложения дробей с разными знаменателями,правила сложения и вычитания дробей,правило сложение дробей,правило сложение и вычитание дробей,правило сложения дробей,правило сложения дробей с разными знаменателями,правило сложения и вычитания дробей,при сложении дробей с разными знаменателями,прибавление дробей,прибавление дробей с разными знаменателями,простые дроби сложения и вычитания решение с целыми числами,с сложение дробей,складывание дробей,складывание дробей с разными знаменателями,складывать дроби,сложение дробей и целых чисел,сложение дробей с,сложение дробей с разными,сложение дробей с разными знаменателями,сложение дробей с разными знаменателями и с целыми,сложение дробей с разными знаменателями и числителями,сложение дробей с разными знаменателями правило,сложение дробей с разными знаменателями примеры для решения,сложение дробей с разными числителями и знаменателями,сложение дробей с целым числом,сложение дробей с целыми числами,сложение дробей с целыми числами и разными знаменателями,сложение дробей с целыми числами с разными знаменателями,сложение дробей с числом,сложение дробей сложных,сложение дроби и целого числа,сложение дроби и числа,сложение дробных чисел,сложение и вычитание дробей правила,сложение и вычитание дробей с разными знаменателями правило,сложение и вычитание дробей с разными знаменателями примеры,сложение неправильных дробей,сложение неправильных дробей с разными знаменателями,сложение простых дробей,сложение простых дробей с разными знаменателями,сложение сложных дробей,сложение смешанных дробей,сложение трех дробей с разными знаменателями,сложение целого числа и дроби,сложение целого числа с дробью,сложение целых чисел и дробей,сложение числа и дроби,сложения дробей с разными знаменателями,сложения дробей с разными знаменателями формула,сложить дроби,смешанные дроби с разными знаменателями как решать,сокращение при сложении дробей,сумма дробей,сумма дробей с разными знаменателями,формула дробей сложения,формула сложения дробей,формула сложения дробей с разными знаменателями,число плюс дробь,чтобы сложить дроби с разными знаменателями нужно. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и выполните сложение дробей. Просто введите задачу в окошко и нажмите «решить» здесь (например, выполнить сложение и вычитание дробей).

    Где можно решить любую задачу по математике, а так же выполните сложение дробей Онлайн?

    Решить задачу выполните сложение дробей вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

    с другой дробью, целым натуральным числом

    В данной публикации мы рассмотрим, каким образом десятичную дробь можно сложить с другой дробью (десятичной и обыкновенной) или целым натуральным числом. Также разберем примеры для лучшего понимания представленного материала.

    Правило сложения десятичных дробей

    Сумма десятичных дробей находится путем их сложения столбиком. Порядок действий следующий:

    1. Одноименные разряды пишем друг под другом: десятые под десятыми, сотые под сотыми, тысячные под тысячными и т.д.

    Примечание: При необходимости (если количество цифр после запятой у суммируемых дробей разное), в конце более “короткой” дроби с меньшим количеством знаков после запятой добавляем нули, чтобы выровнять ее с более “длинной”. Согласно основному свойству десятичной дроби, это никоим образом не отразится на ее величине. Когда процесс доведен до автоматизма, нули можно просто держать в уме.

    2. Десятичные разделители (запятые), также, должны находится строго друг под другом.

    Примеры неправильной записи слагаемых:

    Примеры правильной записи слагаемых:

    3. Складываем дроби, как будто имеем дело с целыми натуральными числами. Т.е. на запятые внимания не обращаем.

    4. В полученном результате ставим запятую строго там же, где она стояла в суммируемых дробях.

    Сумма десятичной дроби и целого натурального числа

    Если к десятичной дроби требуется прибавить целое натуральное число, то в конце последнего ставим запятую, после которой добавляем столько нулей, сколько цифр содержится в дробной части десятичной дроби. Затем вычисляем сумму слагаемых.

    Сложение десятичной и обыкновенной дробей

    Чтобы найти сумму десятичной и обыкновенной дробей, последнюю переводим в десятичную. После этого выполняем сложение.

    Можно поступить наоборот – десятичную дробь преобразовать в обыкновенную. В этом случае уже складываем обыкновенные дроби.

    Примеры

    Давайте найдем сумму десятичных дробей, рассмотренных выше:

    Примечание: если сумма десятых в дробной части результата больше 10, то единицу держим в уме и переносим ее в целую часть.

    И, напоследок, вычислим сумму десятичной дроби и целого числа:

    Действия над дробями, стр.2 — TopRef.ru

    Действия над дробями

    Сложение и вычитание дробей

    Изучение темы следует начать со сложения дробей с одинаковыми знаменателями и на конкретных примерах подчеркнуть, что сложение дробей состоит в подсчете одинаковых долей, содержащихся в данных дробях вместе, т. е. определение сложения дробей мало отличается от определения сложения чисел.

    При сложении дробей с одинаковыми знаменателями следует составить систему упражнений, охватывающую все возможные случаи сложения: 1) целого с дробью; 2) целого со смешанным числом; 3) двух правильных дробей: а) дающих, в сумме правильную дробь, б) дающих в сумме целое число, в) дающих в сумме неправильную дробь; 4) смешанного числа с дробью, причем сумма дробей — правильная дробь; 5) то же, только сумма дробей  целое число;

    6) то же, только сумма дробей — неправильная дробь; 7), 8), 9) те же случаи для суммы смешанных чисел. При сложении дробей с раз­ными знаменателями в основу системы упражнений берутся различ­ные случаи отыскания общего знаменателя. Следует вначале брать простые случаи отыскания общего знаменателя, которые не отвлекали бы от основной задачи — сложения дробей. На основании рассмотрения различных примеров следует добиться, чтобы учащиеся установили справедливость законов сложения для дробных чисел. Например:

    Рассуждения, приведенные на частных примерах, имеют общий характер, а именно: сложение дробей с одинаковыми знаменателями сводится к сложению числителей, т. е. целых чисел; так как для целых чисел справедливы законы сложения, следовательно, они спра­ведливы и для дробных чисел.

    Вычитание дробей определяется, так же как и для целых чисел, как действие, обратное сложению.

    Некоторые авторы предлагают проходить вычитание параллельно с сложением. Такой порядок имеет свои пре­имущества; этим самым все время подчеркивается связь вычитания с сложением как действия, обратного сложению. Большинство же учебников и задачников сначала рассматривают сложение дробей, потом вычитание, после этого — совместно сложение и вычитание, считая, что последний порядок изучения сосредоточивает внимание учащихся на одной трудности.

    При вычитании дробей система упражнений имеет еще большее значение, чем при сложении, так как при вычитания иногда прихо­дится уменьшаемое преобразовывать, что затрудняет учащихся. Посте­пенно усложняя упражнения, можно подготовить учащихся к усвое­нию трудных случаев вычитания. Рассмотрим различные случаи, которые могут быть положены в основу системы упражнений на вычитание дробей с одинаковыми знаменателями, а именно: 1) из дроби вычесть дробь; 2) из смешанного числа  дробь, которая меньше дроби смешанного числа; 3) из единицы  дробь; 4) из це­лого числа, большего единицы,  дробь; 5) из числа, равного еди­нице с дробью, вычесть дробь, которая больше дроби в уменьшае­мом; 6) из смешанного числа  смешанное, причем дробь вычитае­мого меньше дроби уменьшаемого; 7) из целого  смешанное число; 8) из смешанного  смешанное число дробь которого больше дроби уменьшаемом. Примерная запись при сложении и вычитании дробей.

    Не следует спешить переходить к записи общего знаменателя |вод одной чертой; учащиеся часто не осознают, что производится рамена данных дробей им равными дробями с общим знаменателем.

    Умножение дроби на целое число

    Следующим действием изучается умножение дроби на целое число. Умножение дроби на целое число определяется так же, как умножение целых чисел.

    При изучении умножения дроби на целое число необходимо установить с учащимися определение действия умножения дроби на целое число как сложения равных слагаемых, из которых каждое равно множимому; показать тождественность умножения дроби на целое увеличению дроби в несколько раз, дать определение умно­жения дроби на 1; показать рациональный прием сокращения дроби, числитель которой представляет произведение, с которым учащиеся встречаются впервые при умножении дроби на целое; научить применять это действие к задачам; рассмотреть частные случаи умножения, например, умножение дроби на число, равное знаменателю; умножение смешанного числа на целое число. Приведенный перечень задач, стоящих при изучении умножения дроби на целое число, показывает, что каждый вопрос, кажущийся простым, требует тщательного изучения и как много возникает дополнительных задач в связи с данным вопросом.

    Приведем пример плана урока на эту тему,

    1) Проверка домашнего задания.

    2) Устные упражнения на сложение и вычитание дробей.

    3) Устные примеры на деление произведения на число:

    4) Сокращение дробей:

    5) Повторение определения умножения на целое число:

    6) Определение умножения дроби на целое число:

    7) Решение задач в одно действие на умножение дроби на целое »»

    число. Например: 1 м3 сосновых дров весит т. Найти вес 2 м3 этих

    дров (в тоннах), 7 м3.

    8) Сформулировать правило умножения дроби на целое число:

    чтобы умножить дробь на целое число, достаточно числитель дроби умножить на это число, оставив прежний знаменатель.

    9) Решение примеров на умножение дроби на целое число:

    10) Составить задачи, при решении которых требовалось бы умножить.

    11) Домашнее задание.

    Приведенные в этом плане устные упражнения на деление про­изведения на число и сокращение дробей имеют цель подготовить учащихся к обоснованию сокращения дробей, в числителе которых стоит произведение. Учащиеся вспоминают, как разделить произве­дение на число и при сокращении дробей ведут следующие рассуждения: чтобы сократить дробь, надо числитель и знаменатель разделить на одно и то же число; в числителе стоит произведение; чтобы произведение разделить на число, достаточно один из мно­жителей разделить на это число. Поэтому при сокращении дроби делим 10 и 25 на 5.

    На следующем уроке следует предложить учащимся на несколь­ких примерах умножения дроби на целое число сравнить множимое и произведение по величине. Установить, что для дробей, как и для целых чисел, увеличить дробь в несколько раз  значит умножить ее на целое число. На основании рассмотрения примеров вида

    делается вывод об изменении величины дроби с увеличением чис­лителя или уменьшением знаменателя в данное число раз и дается частный прием умножения дроби на целое число, годный для слу­чая, когда знаменатель дроби делится на данное целое число:

    При изучении умножения смешанного числа на целое вначале рассматриваются два способа. Например:

    Последние рассуждения показывают справедливость распредели­тельного закона умножения относительно суммы, когда одно из слагаемых дробь. Рассматривается пример вида

    и делается вывод, что при умножении смешанного числа на целое в большинстве случаев проще отдельно умножить целое и дробь на целое число.

    Сложение целых чисел и дробей — видео и расшифровка урока

    Целые числа и правильные дроби

    Иногда необходимо добавить числа, которые имеют разные форматы. Давайте посмотрим, как это сделать. Ваш младший брат съел 2/3 куска пиццы, а вы съели 3 куска. Сколько штук вы съели все вместе?

    Вам предлагается сложить 2/3, дробь, и 3, целое число. Посмотрите на картинку, чтобы представить, сколько пиццы вы оба съели.

    Если у вас есть целое число и правильная дробь, вы можете просто объединить эти два элемента. Правильная дробь — это дробь, которая меньше единицы и числитель меньше знаменателя.

    В нашем примере с пиццей дробь 2/3 является правильной, поскольку она меньше единицы, а числитель (2) меньше знаменателя (3). Мы можем просто объединить 3 и 2/3, чтобы получить 3 2/3. Вы и ваш младший брат съели 3 2/3 куска пиццы.

    Этот метод можно использовать только с правильными дробями. Сложение целых чисел и неправильных дробей требует разных шагов.

    Целые числа и неправильные дроби

    Неправильная дробь — это дробь, представляющая несколько целых чисел, числитель которой больше знаменателя. Например, вы съели 3 куска пиццы, а ваша старшая сестра съела 4/3 куска пиццы. Сколько вы съели вместе?

    Вы съели 3 штуки, целое число, а ваша сестра съела 4/3 части, неправильная дробь.4/3 представляет более 1 целого, а числитель (4) больше знаменателя (3).

    Чтобы сложить целые числа и неправильные дроби, выполните следующие действия:

    1. Превратите целое число в дробь
    2. Приведите дроби к общему знаменателю
    3. Сложить дроби

    Рассмотрим каждый из этих шагов:

    Преобразование целого числа в дробь

    Вы можете превратить целое число в дробь, поставив его над знаменателем, равным 1.В примере задачи вы съели 3 куска пиццы, поэтому целое число равно 3. Мы можем превратить его в дробь, используя 3 в качестве числителя и 1 в качестве знаменателя. Целое в 1 штуке, а у вас их 3.

    Приведение к общему знаменателю

    Теперь у нас есть две дроби. Вы съели 3/1 куска пиццы, а ваша старшая сестра съела 4/3 куска пиццы. Следующим шагом является присвоение дробям общего знаменателя , кратного, которое является общим для обоих знаменателей.

    Наши знаменатели равны 3 и 1, поэтому наименьший общий знаменатель равен 3, кратному обоим числам. Нам нужно сделать оба знаменателя равными 3. У 4/3 уже есть 3 в качестве знаменателя, поэтому мы можем оставить его в покое.

    Чтобы получить 3/1 в знаменателе 3, умножьте и числитель, и знаменатель на 3

    Складываем дроби

    Теперь, когда у нас есть две дроби, 4/3 и 9/3, мы можем сложить их вместе, и ответ будет 13/3 как неправильная дробь и 4 1/3 как смешанное число.Вы и ваша старшая сестра съели 4 1/3 куска пиццы.

    Краткий обзор урока

    Вы можете сложить целое число и правильную дробь , просто объединив два элемента. Чтобы сложить целое число и неправильную дробь , необходимо преобразовать целое число в неправильную дробь, найти общий знаменатель, а затем сложить дроби.

    Как сложить целое число с дробью

    Вы уже знаете, что такое целые числа, даже если не знали, что означает их название: это числа, которые вы использовали, когда впервые начали считать, начиная с 0, а затем считая 1, 2, 3, 4 и так далее.Дроби представляют часть целого числа. Есть два способа складывать дроби и целые числа, но при этом необходимо соблюдать несколько основных правил.

    Использование торта в качестве примера 

    Это поможет, если вы подумаете о дробях и целых числах в терминах пиццы, пирогов или любой другой вкусной круглой вещи, которую можно разрезать на кусочки и съесть. Подумайте о тортах: каждое знакомое целое число представляет собой целый торт. У вас может быть 1 торт, 2 торта, 3 торта и так далее.Если вы разрезаете торт на кусочки, вы создаете дробь, где нижнее число дроби говорит вам, на сколько частей вы разрезаете каждый торт, а верхнее число говорит вам, сколько частей осталось.

    Сложение целых чисел и дробей

    Если представить целые числа и дроби с точки зрения кусочков торта, то легко представить себе, как складываются целые числа и дроби. Допустим, у вас на столе осталось 2 целых торта, плюс один торт, который был разрезан на 6 равных частей, но кто-то съел кусок, так что теперь на тарелке осталось только 5 кусочков.Вы можете выразить этот нарезанный пирог в виде дроби, с количеством кусков, оставшихся сверху, и количеством кусков, изначально разрезанных снизу:

    \frac{5}{6}

    Вы можете выразить общее количество торт — 2 торта плюс 5/6 торта — как смешанное число, которое записывается как

    2 \frac{5}{6}

    Если у вас есть целое число и дробь, вы можете просто сложить их вместе , что приводит к так называемому смешанному числу. Например, смешанное число

    8 \frac{3}{4}

    понимается как означающее то же самое, что и

    8 + \frac{3}{4}

    , поскольку все согласны с тем, что они означают одно и то же. , вам не нужно записывать символ сложения, когда вы пишете смешанное число.

    Пирожные как неправильные дроби

    Иногда вам будет предложено добавить целые числа к дробям и оставить их в виде неправильной дроби вместо того, чтобы записывать их как смешанные числа. Неправильная дробь — это просто дробь, в которой верхнее число (количество оставшихся ломтиков) больше нижнего числа (количество ломтиков, на которые был разрезан каждый торт). Хороший пример из реальной жизни: вы разрезаете два торта на 6 частей каждый, а затем кто-то съедает 5 кусочков из одного торта.Это означает, что у вас остался один целый торт и 1/6 от другого торта, который был съеден. Чтобы дать свой ответ полностью в форме дроби, вы должны понять, как записать весь торт в виде дроби.

    Целые числа можно записать в виде дробей

    Вот как представить целые числа в виде дробей: Если вы разрежете торт на 8 равных частей и оставите их все на тарелке, у вас останется 8/8 кусков торта. плита. Другими словами, торт был порезан на кусочки, но целое осталось на месте.Вот что представляет собой целое число в форме дроби. Таким образом, дробь, в которой верхнее число (количество оставшихся кусочков) совпадает с нижним числом (количество кусочков, которые вы разрезали в первую очередь), равна 1 целому торту, пирогу или чему-то еще, что вы считаете. .

    \frac{8}{8} = 1 \\ \,\\ \frac{25}{25} = 1 \\ \,\\ \frac{649}{649} = 1

    и так далее. Неважно, какое число находится вверху, а какое внизу, главное, чтобы они были одинаковыми. Вы также можете выразить другие целые числа в виде дробей; просто умножьте целое число на дробь, у которой такое же число сверху и такое же число снизу.Точно так же, как по волшебству, это превращает целое число в форму дроби без изменения его значения, потому что все, что вы сделали, это умножили его на 1.

    Итак, чтобы записать целое число в виде дроби, умножьте целое число на дробь, которая имеет одинаковое число в числителе и знаменателе. Например, если вы хотите записать целое число 5 в виде дроби с 8 в знаменателе, вы должны умножить

    5 × \frac{8}{8} = \frac{40}{8}

    Сложение Преобразование целых чисел в неправильные дроби

    Теперь, когда вы знаете, как записывать целые числа в виде дробей, легко добавлять целые числа к существующей дроби и оставлять их в форме неправильной дроби.Все, что вам нужно сделать, это убедиться, что знаменатели — числа в нижней части дробей — совпадают. (Если бы вы попытались рассказать о тортах, нарезанных на кусочки разного размера, это не имело бы особого смысла, не так ли? То же самое и с дробями.)

    Итак, если вы пытаетесь сложить 3 и 5/ 9, вы должны сначала преобразовать 3 в форму дроби:

    3 × \frac{9}{9} = \frac{27}{9}

    Затем вы можете сложить дроби 5/9 и 27/9 вместе . Когда две дроби имеют одинаковый знаменатель, вы просто складываете числители и записываете их над одним и тем же знаменателем.Таким образом, у вас будет

    5 + 27 = 33

    в числителе и 9 в знаменателе, или 33/9 в качестве окончательного ответа.

    Сложение дробей с целыми числами (примеры вопросов)

    Смешанное число — это число, состоящее из целой части и дробной части.

    Сложение дробей с целыми числами Примеры вопросов

    Вот визуальное представление смешанного числа.

    В этой модели показаны два полностью заштрихованных прямоугольника, представляющих целые числа, и один частично заштрихованный прямоугольник, представляющий дробь.

    Эта дробная модель представляет смешанное число \(2\frac{3}{8}\).

    При сложении смешанного числа с целым числом мы сначала складываем целые числа, а затем добавляем дробь.

    Пример:

    Чему равна сумма \(11\frac{2}{3}\) и \(19\)?

    Мы начнем со сложения целых чисел, то есть \(11+19=30\). Затем добавляем дробную часть в конец.

    Следовательно, сумма \(11\frac{2}{3}\) и \(19\) равна \(30\frac{2}{3}\).

    Вот пример того, как это можно использовать в реальной жизни:

    Моника выбирает два пакета персиков, чтобы купить их на Фермерском рынке. Она кладет каждую сумку на весы, и первая сумка весит \(5\) фунтов. а второй мешок весит \(6\frac{2}{3}\) фунтов. Сколько фунтов персиков покупает Моника?

    При сложении целого числа и дроби мы сначала складываем целые числа, затем добавляем дробь.

    \(5+6=11\), теперь мы включаем \(\frac{2}{3}\), следовательно, Моника покупает всего \(11\frac{2}{3}\) фунтов.персиков.

    Примеры вопросов о сложении дробей с целыми числами

    Вот несколько примеров вопросов о сложении дробей с целыми числами.

    Вопрос №1:

     
    Вычислите сумму \(14\frac{5}{6}\) и \(38\).

    \(54\)

    \(52\frac{5}{6}\)

    \(56\frac{2}{5}\)

    \(55\)

    Показать ответ Вопрос # 2:

     
    Вычислите сумму \(45\) и \(2\frac{1}{3}\).

    \(47\frac{2}{3}\)

    \(45\frac{2}{3}\)

    \(46\frac{3}{5}\)

    \(47 \frac{1}{3}\)

    Показать ответ Вопрос № 3:

     
    Добавить \(4\frac{3}{2}+5\).

    \(10\frac{1}{5}\)

    \(11\frac{3}{5}\)

    \(9\frac{1}{5}\)

    \(10 \frac{1}{2}\)

    Показать ответ Вопрос № 4:

     
    Добавить \(3+3\frac{5}{4}\).

    \(6\frac{1}{4}\)

    \(7\frac{1}{4}\)

    \(6\frac{3}{4}\)

    \(7 \frac{3}{4}\)

    Показать ответ Вопрос № 5:

     
    Вставьте пропущенное значение, чтобы уравнение было верным.
    \(3\frac{4}{5}+\) ______\(=18\frac{4}{5}\)

    \(13\)

    \(14\frac{1}{5} \)

    \(15\)

    \(16\frac{1}{5}\)

    Показать ответ

    Вернуться к примерам вопросов по математике

    Что такое сложение смешанных чисел?

    Добавление смешанных номеров

    Дробь, состоящая из целого числа и дробной части, называется смешанным числом.

    Неправильные дроби, дроби больше единицы, записанные в виде целого числа и правильной дроби, называются смешанными числами.

    Сложение смешанных чисел с одинаковыми знаменателями

    В одной корзине 2 4 5 кг яблок, в другой корзине 3 3 5 кг яблок. Сколько всего яблок в обеих корзинах?

    Здесь, чтобы найти количество яблок в обеих корзинах, мы складываем смешанные числа 2  4 и 3  3 .Знаменатели обеих дробных частей одинаковы. Итак, чтобы сложить смешанные числа с одинаковыми знаменателями, мы складываем целые части вместе и дробные части вместе, а затем объединяем сумму двух, как показано ниже:

    Сложить целую часть с целой частью и дробную часть с дробной частью.

    Если сумма дробных частей является неправильным числом, преобразовать его в смешанное число.

    Объединить сумму целых и дробей.

    Следовательно, имеется 6 2 5 кг яблок.

    Что мы сделали:

    2 4 / 5 / 5 + 3 3 / 5 / 5 = 2 + 3 + 4 / 5 + 3 / 5 / 5

                       = 5 +  7 5

                       = 5 + 1  2 5

                       = 6  2 5

     

    Сложение смешанных чисел с разными знаменателями

    Теперь давайте рассмотрим пример, чтобы понять сложение смешанных чисел с разными знаменателями.

    У Сьюзен есть 1 4 7 литров апельсинового сока. У Кита есть 2 2 5 литров апельсинового сока. Сколько у них апельсинового сока?

    Здесь, чтобы найти ответ, нам нужно сложить смешанные числа 1 4 7 и 2 2 5 . Здесь знаменатели обеих дробных частей разные.

    Чтобы добавить смешанные числа, используйте любой из следующих методов:

    Метод 1 :  

    • Сложите целые числа отдельно и отдельно сложите разные дроби.

      Добавить    1  4 7   + 2  2 5

    2

     Сложение целых чисел

     Сложение непохожих дробей

     1 + 2 = 3

    4 / 7 / 7 + 2 / 5 / 5

    LCM 7 и 5 35.

    Поэтому 4 / 7 = 4 / 7 x 5 5 = 20 / 35

    и 2 / 5 = 2 / 5 х 7 / 7 = 14 / 35

    так, 4 / 7 / 7 + 2 / 5 / 20 / 35 + 14 / 35 = 34 / 35 / 35

     

            3 +  34 35   = 3  34 35

     

    Метод 2 :

    1 4 / 7 = 11 / 7 и 2 2 / 5 / 12 / 5

    1 4 / 7 / 7 + 2 2 / 5 / 11 / 7 + 12 / 5 / 5

    Следовательно,

            НОК из 7 и 5 = 35

    Итак,

    11 / 7 = 11 / 7 x 5 / 5 = 55 / 35

    и

    12 / 5 = 12 / 5 x 7 / 7 / 7 = 84 / 35

    Следовательно,

    11 / 11 / 7 + 12 / 5 = 55 / 35 + 84 / 35

                       =  139 35

             139 35  = 3  34 35

     

     

    Научитесь делить дроби с целыми числами

    Что такое целое число

    Вы уже встречали множество целых чисел.Целые числа — это числа, которые не являются дробями — это целые числа. Например, 2, 12 и 50 будут целыми числами.

    С другой стороны, числа, которые не являются целыми числами, будут выглядеть примерно как 1,25 или 45\frac{4}{5}54​. Хотя дробь является рациональным числом, она не является целым числом. Понимание разницы будет важно в этом уроке.

    Как разделить целое число на дробь

    Когда вы сталкиваетесь с делением дроби на целое число, шаги для этого довольно просты.

    Сначала умножьте нижнее число дробной части вопроса на целое число.

    Например, если у нас есть:

    12÷2\frac{1}{2} \div 221​÷2, возьмите 2 снизу от 12\frac{1}{2}21​ и умножьте его на 2 справа. На самом деле мы заменяем 2 на 12\frac{1}{2}21​, чтобы переместить его вниз, чтобы знак стал знаком умножения, а не деления: 12\frac{1}{2}21​ * 12\фракция{1}{2}21​. Это даст вам 14\frac{1}{4}41​.

    Во-вторых, упростите вопросы, если это необходимо. В этом случае 14\frac{1}{4}41  — это уже самая упрощенная форма ответа, поэтому нет необходимости с ней дальше возиться. Ваш окончательный ответ будет 14\frac{1}{4}41​.

    Эти два шага помогут вам решить любые вопросы, связанные с делением дробей на целые числа.

    Примеры вопросов

    Давайте поместим то, что мы только что научились использовать. Мы даже посмотрим на числовую прямую, чтобы ясно понять, что мы делаем, когда делим целые числа на дробь.

    Вопрос 1:

    Используйте числовые строки, чтобы найти следующее частное:

    13÷4\frac{1}{3} \div 431​÷4

    Решение:

    Начнем с создания числовой линии с 0 на одном конце и 1 на другом. Обратите внимание, что 3/3 также равно 1.

    В вопросе предлагается разделить 13\frac{1}{3}31​ на 4. Поэтому мы подойдем ближе к числовой прямой, увеличив масштаб конкретно области между 0 и 13\frac{1}{3 }31​.

    Итак, давайте разделим этот раздел на 4 раздела.

    Заштрихованная часть — это то, что задает вопрос.

    Чтобы найти точное число, вот в чем хитрость. Посмотрите на числовую прямую от 0 до 1, там три части по 13\frac{1}{3}31​. Делим каждую из них на 4. Всего у нас получается 12 меньших частей.

    Мы ищем только 1 часть из 12 меньших частей (четверть 13\frac{1}{3}31​ ). Итак, окончательный ответ: 112\frac{1}{12}121​.

    Вопрос 2:

    Для приготовления четырех кексов требуется 3/5 стакана сахара. Сколько сахара нужно на три кекса?

    Решение:

    Во-первых, обратите внимание на соотношение сахара и кекса. Нам нужно 35\frac{3}{5}53​ стакана сахара на каждые 4 кекса. Если мы разделим 35\frac{3}{5}53​ на 4, то узнаем, сколько сахара нужно на один кекс.

    35÷4\frac{3}{5} \div 453​÷4

    35÷41\frac{3}{5} \div \frac{4}{1}53​÷14​

    35×14=120\frac{3}{5} \times \frac{1}{4}=\frac{1}{20}53​×41​=201​ сахар/кекс

    Мы хотим знать, сколько сахара нужно для трех кексов.Так что просто возьмите ответ, который мы получили сверху, путем деления на дроби, который говорит, сколько сахара необходимо для одного кекса, и умножьте его на 3.

    320\frac{3}{20}203​ сахар/кекс ×3=920\times 3 = \frac{9}{20}×3=209​

    Вот и твой последний ответ!

    Если вы когда-либо сомневались в своем ответе на вопросы, связанные с делением целого числа на дробь, используйте этот калькулятор, чтобы перепроверить свою работу.

    Чтобы просмотреть концепции, которые помогут вам закрепить понимание этого урока, взгляните на то, как определять общие множители и умножать дробные и целые числа.Вам придется взять эти концепции с собой, когда вы в конце концов научитесь решать двухшаговые линейные уравнения.

    Сложение дробей — Как складывать дроби

    «21/10 или 2 1/10`
    Объяснение:

    Преобразуйте смешанное число в неправильную дробь.
    Умножьте целое число на знаменатель.
    `1 × 5 = 5`
    Прибавьте произведение к числителю правильной дроби.
    `5 + 2 = 7`
    Числитель неправильной дроби равен «7».
    Знаменатель остается равным «5».
    Форма неправильной дроби для «1 2/5» — «7/5».
    Так как дроби имеют разные знаменатели, найдите ЖК.

    5 = 5
    10 = 2 × 5
    ЖК-дисплей = 2 × 5 = 10

    Преобразование дробей в эквивалентные дроби с 10 в знаменателе;

    `7/10 × 1/1 = 7/10`
    `7/5 × 2/2 = 14/10`
    Так как дроби имеют одинаковые знаменатели, добавьте числители и оставьте LCD как есть.
    `7/10 + 14/10 = 21/10 или 2 1/10`
    Следовательно, «7/10 + 1 2/5 = 2 1/10».

    Целые числа и дроби

    Целые числа — это числа 0, 1, 2, 3, 4, 5 и так далее.

    При сложении нескольких целых чисел, таких как 4 314, 122, 93 132 и 10, выровняйте их по столбцам в соответствии со значением разряда, а затем сложите.

    Вычитание — это процесс, в котором значение одного числа берется из значения другого.Ответ называется разницей. При вычитании двух целых чисел, например 3 461 из 97 564, выровняйте их по столбцам в соответствии со значением разряда, а затем вычтите.

    Умножение целых чисел
    Умножение — это процесс многократного сложения. Например, 4 × 3 равно 4 + 4 + 4. Результат называется произведением.

    Пример: Сколько фильтров гидравлической системы находится в помещении снабжения, если имеется 35 коробок, и каждая коробка содержит 18 фильтров?

    Следовательно, в подсобке 630 фильтров.

     

    Деление целых чисел
    Деление — это процесс нахождения того, сколько раз одно число (называемое делителем) содержится в другом числе (называемом делимым). Результатом является частное, а любая оставшаяся сумма называется остатком.

    Пример: 218 болтов шасси нужно разделить между 7 самолетами. Сколько болтов получит каждый самолет?

    Решение: 31 болт на самолет с остатком 1 болт.

    Дроби

    Дробь — это число, записанное в форме N ⁄ D, где N называется числителем, а D — знаменателем. Дробная черта между числителем и знаменателем показывает, что происходит деление.

    Некоторые примеры дробей: 17/18, 2/3, 5/8

    Знаменатель дроби не может быть нулем. Например, дробь 2⁄0 не допускается. Неправильная дробь – это дробь, у которой числитель больше или равен знаменателю.Например, 4/4 или 15/8 являются примерами неправильных дробей.

    Нахождение наименьшего общего знаменателя

    Чтобы складывать или вычитать дроби, они должны иметь общий знаменатель. В математике обычно используется наименьший общий знаменатель (LCD). Один из способов найти LCD — перечислить кратные каждого знаменателя, а затем выбрать наименьший общий для них знаменатель.

    Пример: Сложите 1/5 + 1/10, найдя наименьший общий знаменатель.

    Кратно 5: 5, 10, 15, 20, 25 и так далее.Кратные 10: 10, 20, 30, 40 и так далее. Обратите внимание, что 10, 20 и 30 есть в обоих списках, но 10 — это наименьший или наименьший общий знаменатель (LCD). Преимущество поиска LCD состоит в том, что окончательный ответ, скорее всего, будет самым низким.

    Общий знаменатель можно также найти для любой группы дробей, перемножив все знаменатели вместе. Это число не всегда будет ЖК-дисплеем, но его все же можно использовать для сложения или вычитания дробей.

    Пример: Сложите 2/3 + 3/5 + 4/7, найдя общий знаменатель.

    Общий знаменатель можно найти, умножив знаменатели 3 × 5 × 7, чтобы получить 105.

    Сложение дробей
    Чтобы складывать дроби, знаменатели должны быть одинаковыми. Это называется наличием «общих знаменателей».

    Пример: Прибавьте 1/7 к 3/7

    Если у дробей разные знаменатели, то необходимо изменить один или все знаменатели, чтобы все дроби имели общий знаменатель.


    Пример: Найдите общую толщину панели из алюминия толщиной 3/32 дюйма с лакокрасочным покрытием толщиной 1/64 дюйма. Чтобы сложить эти дроби, найдите общий знаменатель. Наименьший общий знаменатель для этого примера равен 1, поэтому нужно изменить только первую дробь, так как знаменатель второй дроби уже равен 64.


    Следовательно, 7/64 — это общая толщина.

    Вычитание дробей

    Чтобы вычитать дроби, они должны иметь общий знаменатель.

    Пример: вычесть 2/17 из 10/17


    Если у дробей разные знаменатели, то необходимо изменить один или все знаменатели, чтобы у каждой дроби был общий знаменатель.

    Пример: Допуск для установки наклона элеронов самолета составляет 7/8 дюйма ± 1/5 дюйма. Каково минимальное падение, на которое можно настроить элерон? Чтобы вычесть эти дроби, сначала приведите их к общему знаменателю. Общий знаменатель в этом примере равен 40.Измените обе дроби на 1/40, как показано, затем вычтите.

    Следовательно, 27/40 — это минимальный спад.

    Умножение дробей
    Умножение дробей не требует общего знаменателя. Чтобы умножить дроби, сначала умножьте числители. Затем умножьте знаменатели.

    Пример:

    Использование сокращения при умножении дробей является полезным методом, который разделяет или исключает все общие множители, существующие между числителями и знаменателями.Когда все общие множители отменяются перед умножением, конечный продукт будет в наименьших условиях.

    Пример:

    Деление дробей
    Деление дробей не требует общего знаменателя. Чтобы разделить дроби, сначала замените символ деления на умножение. Затем инвертируйте вторую дробь. Затем умножьте дроби.

     

    Пример: разделить 7/8 на 4/3

    Пример: на рис. 1-2 центр отверстия находится в центре пластины.Найдите расстояние, на котором центр отверстия находится от краев пластины. Чтобы найти ответ, длину и ширину тарелки нужно разделить пополам. Сначала замените смешанные числа неправильными дробями:

    Рис. 1-2. Центральное отверстие пластины.

    57/16 дюймов = 87/16 дюймов

    35/8 дюймов = 29/8 дюймов

    Затем разделите каждую неправильную дробь на 2, чтобы найти центр тарелки.

    Наконец, преобразуем каждую неправильную дробь в смешанное число:

    Следовательно, расстояние до центра отверстия от каждого края пластины равно 2 23/32 дюйма и 113/16 дюйма.

    Сокращение дробей
    Дробь должна быть сокращена, если она не является «наименьшим числом». Наименьшие члены означают, что числитель и знаменатель не имеют общих множителей. То есть их нельзя разделить на одно и то же число (или коэффициент). Чтобы уменьшить дробь, определите, какие у нее общие множители, и разделите их на числитель и знаменатель. Например, если и числитель, и знаменатель являются четными числами, их можно разделить на 2.

    Пример: Общий ход винтового домкрата составляет 13/16 дюйма.

    admin

    Добавить комментарий

    Ваш адрес email не будет опубликован.