Правило вычитания дробей с разными знаменателями: Вычитание дробей | Онлайн калькулятор

Содержание

Сравнение, сложение и вычитание дробей с разными знаменателями

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Обыкновенные дроби
  5. Сравнение, сложение и вычитание дробей с разными знаменателями

 Мы уже умеем сравнивать, складывать и вычитать дроби с одинаковыми знаменателями. Теперь рассмотрим сравнение, сложение и вычитание дробей с разными знаменателями.

Пример:

Сравним дроби .

Приведем данные дроби к наименьшему общему знаменателю 10, получим:

Примеры:

1) Найдем сумму .

Наименьший общий знаменатель дробей равен 15. Каждую из этих дробей заменим на ей равную со знаменателем 15. Этой заменой мы сложение дробей с разными знаменателями сведем к сложению дробей с одинаковыми знаменателями, получим:

2) Найдем разность .

Наименьший общий знаменатель дробей равен 35. Каждую из этих дробей заменим на ей равную со знаменателем 35. Этой заменой мы вычитание дробей с разными знаменателями сведем к вычитанию дробей с одинаковыми знаменателями, получим:

Для дробей, как и для натуральных чисел, выполняются свойства сложения:

1) Переместительное свойство:

2) Сочетательное свойство:

Сложение и вычитание смешанных чисел

Пример:

Пример:

Обычно, примеры такого вида, как пример 2, записывают коротко:

Обратите внимание: если в результате сложения или вычитания дробей получается сократимая дробь, то нужно выполнить сокращение.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Доли. Обыкновенные дроби

Сравнение дробей

Делители и кратные

Признаки делимости на 10, на 5 и на 2

Четные и нечетные числа

Признаки делимости на 9 и на 3

Простые и составные числа

Разложение на простые множители

Наибольший общий делитель

Наименьшее общее кратное

Деление и дроби

Сложение и вычитание дробей с одинаковыми знаменателями

Смешанное число

Сложение и вычитание смешанных чисел

Основное свойство дроби

Решето Эратосфена

Приведение дробей к общему знаменателю

Умножение обыкновенных дробей

Деление обыкновенных дробей

Обыкновенные дроби

Правило встречается в следующих упражнениях:

6 класс

Номер 254, Мерзляк, Полонский, Якир, Учебник

Номер 278, Мерзляк, Полонский, Якир, Учебник

Номер 492, Мерзляк, Полонский, Якир, Учебник

Номер 889, Мерзляк, Полонский, Якир, Учебник

Номер 1032, Мерзляк, Полонский, Якир, Учебник

Задание 513, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 514, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1160, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1383, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1451, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 2, Мерзляк, Полонский, Якир, Учебник

Номер 35, Мерзляк, Полонский, Якир, Учебник

Номер 39, Мерзляк, Полонский, Якир, Учебник

Номер 40, Мерзляк, Полонский, Якир, Учебник

Номер 139, Мерзляк, Полонский, Якир, Учебник

Номер 297, Мерзляк, Полонский, Якир, Учебник

Номер 389, Мерзляк, Полонский, Якир, Учебник

Номер 430, Мерзляк, Полонский, Якир, Учебник

Номер 482, Мерзляк, Полонский, Якир, Учебник

Номер 494, Мерзляк, Полонский, Якир, Учебник


© budu5.com, 2022

Пользовательское соглашение

Copyright

правила, примеры, решения, решение дробей

Следующее действие, которое можно выполнять с обыкновенными дробями, — вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

58-28

В итоге у нас осталось 3 восьмых доли, поскольку 5−2=3. Получается, что 58-28=38.

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Определение 1

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде ab-cb=a-cb.  

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Пример 1

Вычтите из дроби 2415 обыкновенную дробь 1715.

Решение 

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24. Мы получаем 7 и дописываем к ней знаменатель, получаем 715.

Наши подсчеты можно записать так: 2415-1715=24-1715=715

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Пример 2

Найдите разность 3712-1512.

Решение

Воспользуемся описанной выше формулой и подсчитаем: 3712-1512=37-1512=2212

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 116. Это неправильная дробь, из которой мы выделим целую часть: 116=156.

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Определение 2

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Пример 3

Вычтите из 29 дробь 115.

Решение 

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45. Для первой дроби необходим дополнительный множитель 5, а для второй – 3.

Подсчитаем: 29=2·59·5=1045115=1·315·3=345

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 1045-345=10-345=745

Краткая запись решения выглядит так: 29-115=1045-345=10-345=745.

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Пример 4

Найдите разность 199 — 736.

Решение 

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 769 и 736.

Считаем ответ: 7636-736=76-736=6936

Результат можно сократить на 3 и получить 2312. Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ — 11112.

Краткая запись всего решения — 199-736=11112.

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Пример 5

Найдите разность 8321 – 3.

Решение 

3 – то же самое, что и 31. Тогда можно подсчитать так: 8321-3=2021.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 8321 при выделении целой части получится 8321=32021.

Теперь просто вычтем 3 из него: 32021-3=2021.

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Пример 6

Найдите разность: 7-53.

Решение 

Сделаем 7 дробью 71. Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7-53=513. 

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Определение 3

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1. После этого нужно вычесть нужную дробь из единицы и получить ответ.

Пример 7

Вычислите разность 1 065 -1362.

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065-1362=(1064+1)-1362

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064+1-1362. Подсчитаем разность в скобках. Для этого единицу представим как дробь 11.

Получается, что 1-1362=11-1362=6262-1362=4962.

Теперь вспомним про 1064 и сформулируем ответ: 10644962.

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065-1362=10651-1362=1065·621·62-1362=6603062-1362==66030-1362=6601762=106446

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Пример 8

Вычислите разность 644 — 735.

Решение 

Вторая дробь – неправильная, и от нее надо отделить целую часть.

735=1435

Теперь вычисляем аналогично предыдущему примеру: 630-35=(629+1)-35=629+1-35=629+25=62925

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Пример 9

Найдите разность 244-32-56.

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 254-32, а потом отнимем от нее последнюю дробь:

254-32=244-64=194194-56=5712-1012=4712

Преобразуем ответ, выделив из него целую часть. Итог — 31112.

Краткая запись всего решения:

254-32-56=254-32-56=254-64-56==194-56=5712-1012=4712=31112

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Пример 10

Н айдите разность 98+1720-5+35.

Решение 

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98+1720-5+35=98+1720-5-35=98-5+1720-35

Завершим расчеты: 98-5+1720-35=93+1720-1220=93+520=93+14=9314 

Дроби с вычитанием и сложением например. Сложение и вычитание обыкновенных дробей

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей — правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби — выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория «Ахиллес и черепаха». Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт… Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что «… дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось… к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса… » [Википедия, » Апории Зенона «]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие «бесконечность» в этой ситуации, то правильно будет говорить «Ахиллес бесконечно быстро догонит черепаху».

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию «Ахиллес и черепаха» очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто — достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве — это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, «во множестве не может быть двух идентичных элементов», но если идентичные элементы во множестве есть, такое множество называется «мультимножество». Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова «совсем». Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой «чур, я в домике», точнее «математика изучает абстрактные понятия», есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его «математическое множество зарплаты». Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: «к другим это применять можно, ко мне — низьзя!». Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами — на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально…

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует — всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова — значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов — у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких «мыслимое как не единое целое» или «не мыслимое как единое целое».

воскресенье, 18 марта 2018 г.

Сумма цифр числа — это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу «Сумма цифр числа». Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры — это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: «Найти сумму графических символов, изображающих любое число». Математики эту задачу решить не могут, а вот шаманы — элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки — это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот «курсы кройки и шитья» от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых — нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Открывает дверь и говорит:

Ой! А это разве не женский туалет?
— Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский… Нимб сверху и стрелочка вниз — это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А — это не «минус четыре градуса» или «один а». Это «какающий человек» или число «двадцать шесть» в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Содержание урока

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями
  2. Сложение дробей с разными знаменателями

Сначала изучим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения. Например, сложим дроби и . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы:

Пример 2. Сложить дроби и .

В ответе получилась неправильная дробь . Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два равно единице:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:

Пример 3 . Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:

Пример 4. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы.

Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателя, нужно сложить их числители, а знаменатель оставить без изменения;

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби и сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1 . Сложим дроби и

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается. К прибавить получается .

Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби и к общему знаменателю, мы получили дроби и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ

Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним.

Например, найдём значение выражения . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы:

Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Вычитание дробей с разными знаменателями

Например, от дроби можно вычесть дробь , поскольку у этих дробей одинаковые знаменатели. А вот от дроби нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей и к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков.

Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10

Получили ответ

Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить прежним.

Пример 1 . Умножить дробь на число 1 .

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы:

Пример 2 . Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно

Пример 2 . Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Пример 3. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15

Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как . От этого пятёрка своего значения не поменяет, поскольку выражение означает «число пять разделить на единицу», а это, как известно равно пятёрке:

Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы.

Деление дробей выполняется с помощью обратных чисел. Обратные числа позволяют заменить деление умножением.

Чтобы разделить дробь на число, нужно эту дробь умножить на число, обратное делителю.

Пользуясь этим правилом, запишем деление нашей половины пиццы на две части.

Итак, требуется разделить дробь на число 2 . Здесь делимым является дробь , а делителем число 2.

Чтобы разделить дробь на число 2, нужно эту дробь умножить на число, обратное делителю 2. Обратное делителю 2 это дробь . Значит нужно умножить на

Разные действия с дробями можно выполнять, например, сложение дробей. Сложение дробей можно разделить на несколько видов. В каждом виде сложения дробей свои правила и алгоритм действий. Рассмотрим подробно каждый вид сложения.

Сложение дробей с одинаковыми знаменателями.

На примере посмотрим, как складывать дроби с общим знаменателем.

Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или \(\frac{1}{5}\) от всего пути. Во второй день они прошли от точки B до D или \(\frac{2}{5}\) от всего пути. Какое расстояние они прошли от начала пути до точки D?

Чтобы найти расстояние от точки A до точки D нужно сложить дроби \(\frac{1}{5} + \frac{2}{5}\).

Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.

\(\frac{1}{5} + \frac{2}{5} = \frac{1 + 2}{5} = \frac{3}{5}\)

В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:

\(\bf \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}\)

Ответ: туристы прошли \(\frac{3}{5}\) всего пути.

Сложение дробей с разными знаменателями.

Рассмотрим пример:

Нужно сложить две дроби \(\frac{3}{4}\) и \(\frac{2}{7}\).

Чтобы сложить дроби с разными знаменателями нужно сначала найти , а потом воспользоваться правилом сложения дробей с одинаковыми знаменателями.

Для знаменателей 4 и 7 общим знаменателем будет число 28. Первую дробь \(\frac{3}{4}\) нужно умножить на 7. Вторую дробь \(\frac{2}{7}\) нужно умножить на 4.

\(\frac{3}{4} + \frac{2}{7} = \frac{3 \times \color{red} {7} + 2 \times \color{red} {4}}{4 \times \color{red} {7}} = \frac{21 + 8}{28} = \frac{29}{28} = 1\frac{1}{28}\)

В буквенном виде получаем такую формулу:

\(\bf \frac{a}{b} + \frac{c}{d} = \frac{a \times d + c \times b}{b \times d}\)

Сложение смешанных чисел или смешанных дробей.

Сложение происходит по закону сложения.

У смешанных дробей складываем целые части с целыми и дробные части с дробными.

Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

Сложим смешанные числа \(3\frac{6}{11}\) и \(1\frac{3}{11}\).

\(3\frac{6}{11} + 1\frac{3}{11} = (\color{red} {3} + \color{blue} {\frac{6}{11}}) + (\color{red} {1} + \color{blue} {\frac{3}{11}}) = (\color{red} {3} + \color{red} {1}) + (\color{blue} {\frac{6}{11}} + \color{blue} {\frac{3}{11}}) = \color{red}{4} + (\color{blue} {\frac{6 + 3}{11}}) = \color{red}{4} + \color{blue} {\frac{9}{11}} = \color{red}{4} \color{blue} {\frac{9}{11}}\)

Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

Выполним сложение смешанных чисел \(7\frac{1}{8}\) и \(2\frac{1}{6}\).

Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь \(7\frac{1}{8}\) на дополнительный множитель 3, а вторую дробь \(2\frac{1}{6}\) на 4.

\(7\frac{1}{8} + 2\frac{1}{6} = 7\frac{1 \times \color{red} {3}}{8 \times \color{red} {3}} = 2\frac{1 \times \color{red} {4}}{6 \times \color{red} {4}} =7\frac{3}{24} + 2\frac{4}{24} = 9\frac{7}{24}\)

Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.

Пример №1:
Может ли сумма двух в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

\(\frac{2}{7} + \frac{3}{7} = \frac{2 + 3}{7} = \frac{5}{7}\)

Дробь \(\frac{5}{7}\) это правильная дробь, она является результатом суммы двух правильных дробей \(\frac{2}{7}\) и \(\frac{3}{7}\).

\(\frac{2}{5} + \frac{8}{9} = \frac{2 \times 9 + 8 \times 5}{5 \times 9} =\frac{18 + 40}{45} = \frac{58}{45}\)

Дробь \(\frac{58}{45}\) является неправильной дроби, она получилась в результате суммы правильных дробей \(\frac{2}{5}\) и \(\frac{8}{9}\).

Ответ: на оба вопроса ответ да.

Пример №2:
Сложите дроби: а) \(\frac{3}{11} + \frac{5}{11}\) б) \(\frac{1}{3} + \frac{2}{9}\).

а) \(\frac{3}{11} + \frac{5}{11} = \frac{3 + 5}{11} = \frac{8}{11}\)

б) \(\frac{1}{3} + \frac{2}{9} = \frac{1 \times \color{red} {3}}{3 \times \color{red} {3}} + \frac{2}{9} = \frac{3}{9} + \frac{2}{9} = \frac{5}{9}\)

Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) \(1\frac{9}{47}\) б) \(5\frac{1}{3}\)

а) \(1\frac{9}{47} = 1 + \frac{9}{47}\)

б) \(5\frac{1}{3} = 5 + \frac{1}{3}\)

Пример №4:
Вычислите сумму: а) \(8\frac{5}{7} + 2\frac{1}{7}\) б) \(2\frac{9}{13} + \frac{2}{13}\) в) \(7\frac{2}{5} + 3\frac{4}{15}\)

а) \(8\frac{5}{7} + 2\frac{1}{7} = (8 + 2) + (\frac{5}{7} + \frac{1}{7}) = 10 + \frac{6}{7} = 10\frac{6}{7}\)

б) \(2\frac{9}{13} + \frac{2}{13} = 2 + (\frac{9}{13} + \frac{2}{13}) = 2\frac{11}{13} \)

в) \(7\frac{2}{5} + 3\frac{4}{15} = 7\frac{2 \times 3}{5 \times 3} + 3\frac{4}{15} = 7\frac{6}{15} + 3\frac{4}{15} = (7 + 3)+(\frac{6}{15} + \frac{4}{15}) = 10 + \frac{10}{15} = 10\frac{10}{15} = 10\frac{2}{3}\)

Задача №1:
За обедам съели \(\frac{8}{11}\) от торта, а вечером за ужином съели \(\frac{3}{11}\). Как вы думаете торт полностью съели или нет?

Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

\(\frac{8}{11} + \frac{3}{11} = \frac{11}{11} = 1\)

Ответ: весь торт съели.

Действия с дробями.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Итак, что из себя представляют дроби, виды дробей, преобразования — мы вспомнили. Займёмся главным вопросом.

Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

Смешанные числа , как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями ! Действия с обыкновенными дробями — это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

Сложение и вычитание дробей.

Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

Короче, в общем виде:

А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь ! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения .

Ещё пример:

Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений…

Дорешайте уж пример самостоятельно. Не логарифм какой… Должно получиться 29/16.

Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах… И ничего не забыл.

А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями . Здесь обнаружатся новые грабли, да…

Итак, нам надо сложить два дробных выражения:

Надо сделать знаменатели одинаковыми. Причём только с помощью умножения ! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби — на х. Получится вот что:

Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки…

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе — само число, в знаменателе — единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами — то же самое. (а+в) = (а+в)/1, х=х/1 и т.д. А дальше работаем с этим дробями по всем правилам.

Ну, по сложению — вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой — повторили. Можно и провериться. Порешаем немного?)

Вычислить:

Ответы (в беспорядке):

71/20; 3/5; 17/12; -5/4; 11/6

Умножение/деление дробей — в следующем уроке. Там же и задания на все действия с дробями.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Табличка на двери

Вычитание дробей с разными примеры. Вычитание дробей с разными знаменателями. Сложение и вычитание обыкновенных дробей

Дробные выражения сложны для понимания ребёнком. У большинства возникают сложности, связанные с . При изучении темы «сложение дробей с целыми числами», ребёнок впадает в ступор, затрудняясь решить задание. Во многих примерах перед тем как выполнить действие нужно произвести ряд вычислений. Например, преобразовать дроби или перевести неправильную дробь в правильную.

Объясним ребёнку наглядно. Возьмём три яблока, два из которых будут целыми, а третье разрежем на 4 части. От разрезанного яблока отделим одну дольку, а остальные три положим рядом с двумя целыми фруктами. Получим ¼ яблока в одной стороне и 2 ¾ — в другой. Если мы их соединим, то получим целых три яблока. Попробуем уменьшить 2 ¾ яблока на ¼, то есть уберём ещё одну дольку, получим 2 2/4 яблока.

Рассмотрим подробнее действия с дробями, в составе которых присутствуют целые числа:

Для начала вспомним правило вычисления для дробных выражений с общим знаменателем:

На первый взгляд всё легко и просто. Но это касается только выражений, не требующих преобразования.

Как найти значение выражения где знаменатели разные

В некоторых заданиях необходимо найти значение выражения, где знаменатели разные. Рассмотрим конкретный случай:
3 2/7+6 1/3

Найдём значение данного выражения, для этого найдём для двух дробей общий знаменатель.

Для чисел 7 и 3 – это 21. Целые части оставляем прежними, а дробные – приводим к 21, для этого первую дробь умножаем на 3, вторую – на 7, получаем:
6/21+7/21, не забываем, что целые части не подлежат преобразованию. В итоге получаем две дроби с одним знаменателям и вычисляем их сумму:
3 6/21+6 7/21=9 15/21
Что если в результате сложения получается неправильная дробь, которая уже имеет целую часть:
2 1/3+3 2/3
В данном случае складываем целые части и дробные, получаем:
5 3/3, как известно, 3/3 – это единица, значит 2 1/3+3 2/3=5 3/3=5+1=6

С нахождением суммы всё понятно, разберём вычитание:

Из всего сказанного вытекает правило действий над смешанными числами, которое звучит так:

  • Если же от дробного выражения необходимо вычесть целое число, не нужно представлять второе число в виде дроби, достаточно произвести действие только над целыми частями.

Попробуем самостоятельно вычислить значение выражений:

Разберём подробнее пример под буквой «м»:

4 5/11-2 8/11, числитель первой дроби меньше, чем второй. Для этого занимаем одно целое число у первой дроби, получаем,
3 5/11+11/11=3 целых 16/11, отнимаем от первой дроби вторую:
3 16/11-2 8/11=1 целая 8/11

  • Будьте внимательны при выполнении задания, не забывайте преобразовывать неправильные дроби в смешанные, выделяя целую часть. Для этого необходимо значение числителя разделить на значение знаменателя, то что получилось, встаёт на место целой части, остаток – будет числителем, например:

19/4=4 ¾, проверим: 4*4+3=19, в знаменателе 4 остаётся без изменений.

Подведём итог:

Перед тем как приступить к выполнению задания, связанного с дробями, необходимо проанализировать, что это за выражение, какие преобразования нужно совершить над дробью, чтобы решение было правильным. Ищите более рациональные способ решения. Не идите сложными путями. Распланируйте все действия, решайте сначала в черновом варианте, затем переносите в школьную тетрадь.

Чтобы не произошло путаницы при решении дробных выражений, необходимо руководствоваться правилом последовательности. Решайте всё внимательно, не торопясь.

Действия с дробями.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Итак, что из себя представляют дроби, виды дробей, преобразования — мы вспомнили. Займёмся главным вопросом.

Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

Смешанные числа , как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями ! Действия с обыкновенными дробями — это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

Сложение и вычитание дробей.

Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

Короче, в общем виде:

А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь ! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения .

Ещё пример:

Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений…

Дорешайте уж пример самостоятельно. Не логарифм какой… Должно получиться 29/16.

Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах… И ничего не забыл.

А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями . Здесь обнаружатся новые грабли, да…

Итак, нам надо сложить два дробных выражения:

Надо сделать знаменатели одинаковыми. Причём только с помощью умножения ! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби — на х. Получится вот что:

Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки…

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе — само число, в знаменателе — единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами — то же самое. (а+в) = (а+в)/1, х=х/1 и т.д. А дальше работаем с этим дробями по всем правилам.

Ну, по сложению — вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой — повторили. Можно и провериться. Порешаем немного?)

Вычислить:

Ответы (в беспорядке):

71/20; 3/5; 17/12; -5/4; 11/6

Умножение/деление дробей — в следующем уроке. Там же и задания на все действия с дробями.

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Ваш ребенок принес домашнее задание из школы, и вы не знаете как его решить? Тогда этот мини урок для вас!

Как складывать десятичные дроби

Десятичные дроби удобнее складывать в столбик. Чтобы выполнить сложение десятичных дробей, надо придерживаться одного простого правила:

  • Разряд должен находиться под разрядом, запятая под запятой.

Как вы видите на примере, целые единицы находятся друг под другом, разряд десятых и сотых находится друг под другом. Теперь складываем числа, не обращая внимания на запятую. Что же делать с запятой? Запятая переносится на то место, где стояла в разряде целых.

Сложение дробей с равными знаменателями

Чтобы выполнить сложение с общим знаменателем, надо сохранить знаменатель без изменения, найти сумму числителей и получим дробь, которая будет являться общей суммой.


Сложение дробей с разными знаменателями методом нахождения общего кратного

Первое, на что надо обратить внимание – это на знаменатели. Знаменатели разные, не делятся ли одно на другое, являются ли простыми числами. Для начала надо привести к одному общему знаменателю, для этого существует несколько способов:

  • 1/3 + 3/4 = 13/12, для решения этого примера нам надо найти наименьшее общее кратное число (НОК), которое будет делиться на 2 знаменателя. Для обозначения наименьшего кратного чисел a и b – НОК (а;b). В данном примере НОК (3;4)=12. Проверяем: 12:3=4; 12:4=3.
  • Перемножаем множители и выполняем сложение полученных чисел, получаем 13/12 – неправильную дробь.


  • Для того чтобы перевести неправильную дробь в правильную, разделим числитель на знаменатель, получим целое число 1, остаток 1 – числитель и 12 – знаменатель.

Сложение дробей методом умножения крест на крест

Для складывания дробей с разными знаменателями существует еще один способ по формуле “крест на крест”. Это гарантированный способ уровнять знаменатели, для этого вам надо числители перемножить со знаменателем одной дроби и обратно. Если вы только на начальном этапе изучения дробей, то этот способ самый простой и точный, как получить верный результат при сложении дробей с разными знаменателями.

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей — правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби — выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей — правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби — выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Сложение и вычитание дробей с разными знаменателями

Представим себе такую историю…

– Саша, что случилось? О чём ты задумался? – спросил у друга Паша.

– У нас в школе собирали макулатуру, – начал Саша. – Наша параллель шестых классов собрала  тонны макулатуры, а параллель пятых классов –  тонны. Мне стало интересно, сколько же всего макулатуры собрали обе параллели и какая из параллелей собрала больше.

– Так возьми и посчитай, – сказал Паша. – Чтобы узнать, сколько всего собрали макулатуры, нужно сложить дроби, а чтобы выяснить, какая из параллелей собрала больше, – сравнить дроби.

– Это понятно, – загрустил Саша, – но проблема в том, что пока я только умею складывать и вычитать дроби с одинаковыми знаменателями. А как сложить дроби  и ? Ведь эти дроби имеют разные знаменатели.

– Точно… – заметил Паша. – А давай спросим у Мудряша. Он же научил нас складывать и вычитать дроби с одинаковыми знаменателями, а значит, и сможет научить нас складывать и отнимать дроби с разными знаменателями.

– Ребята, прежде чем я вам расскажу о сложении и вычитании дробей с разными знаменателями, а также о сравнении таких дробей, давайте немного разомнёмся и выполним устные задания, – предложил Мудряш.

– Давайте сверимся! – сказал Мудряш. — Посмотрите, что у вас должно было получиться!

– Ну а теперь вернёмся к вашему вопросу, – начал Мудряш. – Чтобы ответить на вопрос «Сколько всего макулатуры собрали обе параллели?», нужно сложить дроби  и .

– Да, – согласились мальчишки, – но мы же ещё не умеем складывать и вычитать дроби с разными знаменателями.

Чтобы сложить (вычесть) две дроби с разными знаменателями, надо сначала привести их к общему знаменателю, – продолжил Мудряш, – а затем применить правило сложения (вычитания) дробей с одинаковыми знаменателями.

– Наименьший общий знаменатель дробей  и  равен 48, – начал Паша. – Тогда первая дробь  равна дроби .

– А вторая дробь , – продолжил Саша, – равна дроби .

– Молодцы! – похвалил ребят Мудряш. – Каждую из этих дробей вы заменили на равную ей дробь со знаменателем 48. Обратите внимание: этой заменой сложение дробей с разными знаменателями сводится к сложению дробей с одинаковыми знаменателями. А складывать дроби с одинаковыми знаменателями вы уже умеете. Давайте вспомним правило сложения дробей с одинаковыми знаменателями.

Чтобы найти сумму дробей с одинаковыми знаменателями, нужно сложить их числители и оставить тот же знаменатель, – сказал Паша.

– А теперь, применяя это правило, ответьте на вопрос «Сколько всего макулатуры собрали параллели шестых и пятых классов?» – спросил Мудряш.

– Получим дробь , – ответил Саша.

– Молодцы! – похвалил ребят Мудряш. – А теперь давайте ответим на вопрос «Какая из параллелей — шестых или пятых классов — собрала больше макулатуры?»

– Ну, сейчас понятно, что параллель шестых классов собрала больше макулатуры, чем параллель пятых классов, – начал Саша, – ведь .

– Может, вы сможете сказать, на сколько больше собрала макулатуры параллель шестых классов? – спросил у ребят Мудряш.

– Чтобы ответить на этот вопрос, нужно найти разность дробей  и , – начал Паша. – Мы уже выяснили, что наименьший общий знаменатель этих дробей равен 48. Тогда разность дробей  и  можем заменить на разность дробей . Воспользуемся правилом вычитания дробей с одинаковыми знаменателями. В результате получим дробь .

– Молодцы! – похвалил ребят Мудряш. – А теперь давайте обдумаем, что нам пришлось проделать при сложении и вычитании дробей  и , и сделаем вывод.

Запомните! Чтобы найти сумму двух дробей, нужно привести их к общему знаменателю, сумму числителей полученных дробей записать в числитель результата и оставить общий знаменатель.

Чтобы найти разность двух дробей, нужно привести их к общему знаменателю, разность дробей записать в числитель результата и оставить общий знаменатель.

Чтобы сравнить дроби с разными знаменателями, сначала надо привести данные дроби к наименьшему общему знаменателю, а затем сравнить полученные дроби.

– Если знаменатели слагаемых невелики, то общий знаменатель и дополнительные множители обычно находят в уме, – продолжил Мудряш. – Тогда все вычисления записывают цепочкой равенств. Для удобства дополнительные множители пишут чуть выше и правее слагаемых и подчёркивают небольшой дужкой.

– А теперь давайте потренируемся и найдём сумму дробей  и  и разность дробей  и .

– Начнём с суммы дробей, – сказал Паша. – Для начала найдём общий знаменатель дробей  и . Наименьший общий знаменатель этих дробей равен 60. Тогда сумму дробей  и  заменим на сумму равных им дробей со знаменателем 60. Дополнительный множитель к первой дроби равен 5, а ко второй – 4. Получим сумму дробей  и . В результате получим дробь .

– Осталось вычислить разность дробей  и , – продолжил Саша. – Наименьший общий знаменатель этих дробей равен 9. Тогда разность дробей  и  заменим на разность равных им дробей со знаменателем равным 9. Дополнительный множитель к первой дроби равен 3, ко второй – 1. Получим разность дробей  и . В результате получим дробь .

– Всё правильно посчитали! – согласился Мудряш. – Ещё вам следует знать, что если в результате получается сократимая дробь, то её нужно сократить, если в результате получается неправильная дробь, то необходимо выделить целую часть. Давайте найдём суммы следующих дробей.

– Найдём первую сумму дробей, – начал Паша. – Наименьший общий знаменатель дробей  и  равен 6. Тогда дополнительный множитель к первой дроби равен 2, ко второй дроби – 1. Получим сумму дробей  и . Применим правило сложения дробей с одинаковыми знаменателями. В результате получим дробь . Это сократимая дробь. Сократим числитель и знаменатель дроби  на 3. Получим дробь .

– Перейдём к следующей сумме дробей – продолжил Саша. – Наименьший общий знаменатель дробей  и  равен 12. Дополнительный множитель к первой дроби равен 3, ко второй – 2. Получим сумму дробей  и . Воспользуемся правилом сложения дробей с одинаковыми знаменателями. Получим дробь . Это неправильная дробь, так как числитель больше знаменателя. Выделим целую часть. В результате получим дробь .

– Молодцы! – похвалил ребят Мудряш. – Вы знаете, что для натуральных чисел выполняются переместительное и сочетательное свойства сложения. Эти же свойства верны и для дробей.

– А теперь, ребята, давайте посмотрим, как вы всё поняли, и выполним несколько заданий.

Задание первое: расположите дроби в порядке возрастания: а) ;      б) ;       в) ;        г) .

Решение: для начала нужно привести дроби к наименьшему общему знаменателю. Наименьший общий знаменатель наших дробей равен 30. Дополнительный множитель к первой дроби равен 6, ко второй – 3, к третьей – 2 и к последней – 1. Получим дроби: , , , . А теперь расставим эти дроби в порядке возрастания, то есть от меньшей к большей. Самой первой будет стоять дробь , за ней будет стоять дробь , затем дробь  и последней будет стоять дробь . А значит, наши первоначальные дроби будут стоять в таком порядке: , , , .

Следующее задание: найдите значение выражения .

Решение: сначала вычислим сумму дробей , так как сумма записана в скобках. Напомним, что для того, чтобы сложить два смешанных числа, надо отдельно сложить их целые и дробные части. Сгруппируем отдельно целые части 2 и 1, а также сгруппируем отдельно дробные части  и . В первой группе получим 3. Дроби второй группы приведём к наименьшему общему знаменателю. Наименьший общий знаменатель дробей  и  равен 24. Дополнительный множитель к первой дроби равен 8, ко второй – 3. Получим сумму дробей  и . Применим правило сложения дробей с одинаковыми знаменателями. Получим дробь . Тогда наша сумма в скобках равна .

Осталось вычислить разность дробей  и . Снова сгруппируем отдельно целые части и отдельно дробные части наших смешанных чисел. Разность целых частей равна 2. Дробная часть имеет разные знаменатели. Приведём эти дроби к наименьшему общему знаменателю 24. Дополнительный множитель к первой дроби равен 3, ко второй – 1. Получим дроби  и . Мы не можем выполнить вычитание этих дробей, так как первая дробь меньше второй. Возьмём 1 из целой части, запишем её неправильной дробью  и добавим к дроби . Получим дробь . Выполним вычитание. В результате получим . Дробная часть нашего смешанного числа сократимая. Сократим её на 2. В итоге получим .    

Сложение дробей, вычитание дробей

Сложение обыкновенных дробей

Сложение дробей с одинаковыми знаменателями

Пример 1

Рассмотрим пример:

Пусть на тарелке лежало $\frac{3}{8}$ доли яблока, к ним положили еще $\frac{2}{8}$ доли того же яблока. Это можно записать следующим образом: $\frac{3}{8}+\frac{2}{8}$. В результате на тарелке оказалось $3+2=5$ восьмых долей яблока, то есть $\frac{5}{8}$ долей. То есть результатом сложения обыкновенных дробей $\frac{3}{8}$ и $\frac{2}{8}$ является обыкновенная дробь $\frac{5}{8}$.

Пример дает возможность сделать вывод, что в результате сложения дробей с одинаковыми знаменателями получается дробь с числителем, равным сумме числителей складываемых дробей, и знаменателем, равным знаменателю исходных дробей.

Таким образом, можно сформулировать правило сложения дробей с одинаковыми знаменателями:

при сложении дробей с одинаковыми знаменателями числители складываются, а знаменатель остается прежним:

Пример 2

Сложить обыкновенные дроби $\frac{7}{18}$ и $\frac{4}{18}$.

Решение.

Т.к. знаменатели у складываемых дробей равны, в результате сложения знаменатель дроби будет $18$, а числитель будет равен сумме числителей складываемых дробей, то есть $7+4=11$. Таким образом, сложение дробей $\frac{7}{18}$ и $\frac{4}{18}$ дает дробь $\frac{11}{18}$.

Краткое решение: $\frac{7}{18}+\frac{4}{18}=\frac{11}{18}$.

Ответ: $\frac{11}{18}$.

После выполнения действий над дробями нужно проверить результат и, при необходимости, преобразовать его следующим образом:

  • В результате сложения дробей получили сократимую дробь — необходимо выполнить сокращение дроби.
  • В результате получили неправильную дробь — необходимо выделить целую часть.

Готовые работы на аналогичную тему

Пример 3

Вычислить сумму обыкновенных дробей $\frac{3}{10}$ и $\frac{2}{10}$.

Решение.

Применим правило сложения дробей с одинаковыми знаменателями:

\[\frac{3}{10}+\frac{2}{10}=\frac{3+2}{10}=\frac{5}{10}\]

Получили сократимую дробь, т.к. числитель и знаменатель делятся на $5$ (по признаку делимости на $5$). Сократим полученную дробь:

\[\frac{5}{10}=\frac{1\cdot 5}{2\cdot 5}=\frac{1}{5}\]

Итак, в результате сложения дробей $\frac{3}{10}$ и $\frac{2}{10}$ получили $\frac{1}{5}$.

Краткое решение: $\frac{3}{10}+\frac{2}{10}=\frac{3+2}{10}=\frac{5}{10}=\frac{1}{5}$.

Ответ: $\frac{1}{5}$.

Пример 4

Выполнить сложение обыкновенных дробей $\frac{52}{69}$ и $\frac{77}{69}$.

Решение.

Выполним сложение дробей с одинаковыми знаменателями:

\[\frac{52}{69}+\frac{77}{69}=\frac{52+77}{69}=\frac{129}{69}\]

Проверим дробь на сократимость. Т.к. и числитель, и знаменатель соответствуют признаку делимости на $3$, полученная дробь может быть сокращена на число $3$. Получим:

\[\frac{129}{69}=\frac{129:3}{69:3}=\frac{43}{23}\]

Полученная дробь является неправильной. Выделим целую часть из неправильной дроби $\frac{43}{23}$, получим $1\frac{20}{23}$.

Краткое решение:

\[\frac{52}{69}+\frac{77}{69}=\frac{52+77}{69}=\frac{129}{69}=\frac{43}{23}=1\frac{20}{23}\]

Ответ: $1\frac{20}{23}$.

Сложение дробей с разными знаменателями

Сложение дробей с разными знаменателями сводится к сложению дробей с одинаковыми знаменателями, для чего их приводят к общему знаменателю.

Правило сложения дробей с разными знаменателями:

  1. Складываемые дроби привести к общему знаменателю (чаще всего, к наименьшему общему знаменателю).

  2. Выполнить сложение полученных дробей с одинаковыми знаменателями.

Пример 5

Сложить обыкновенные дроби $\frac{6}{7}$ и $\frac{4}{21}$.

Решение.

Складываемые дроби имеют разные знаменатели, поэтому приведем дроби к наименьшему общему знаменателю.

Наименьшее общее кратное НОК чисел $7$ и $21$ равно $21$: $НОК\left(7,\ \ 21\right)=21$.

Найдем соответствующие дополнительные множители: $21:7=3.$ Получим

\[\frac{6}{7}=\frac{6\cdot 3}{7\cdot 3}=\frac{18}{21}\]

Сложим дроби:

\[\frac{18}{21}+\frac{4}{21}=\frac{18+4}{21}=\frac{22}{21}\]

В результате получили неправильную дробь, из которой выделим целую часть:

\[\frac{22}{21}=1\frac{1}{21}\]

Краткое решение:

\[\frac{6}{7}+\frac{4}{21}=\frac{18+4}{21}=\frac{22}{21}=1\frac{1}{21}\]

Ответ: $1\frac{1}{21}$.

Вычитание обыкновенных дробей

Действие вычитания дробей является обратным сложению.

Вычитание дробей с одинаковыми знаменателями

Рассмотрим пример:

Пусть на тарелке лежало $\frac{6}{8}$ долей яблока. $\frac{3}{8}$ доли съели. Это можно записать как $\frac{6}{8}-\frac{3}{8}$. В результате на тарелке осталось $6-3=3$ восьмых доли яблока, т.е. $\frac{6}{8}-\frac{3}{8}=\frac{3}{8}$.

Таким образом, можно сформулировать правило вычитания дробей с одинаковыми знаменателями:

при вычитании дробей с одинаковыми знаменателями числители вычитаются, а знаменатель остается прежним:

Пример 6

Выполнитm вычитание обыкновенных дробей $\frac{13}{18}$ и $\frac{5}{18}$ .

Решение.

У вычитаемых дробей знаменатели одинаковые. Числитель уменьшаемой дроби равен $13$, а числитель вычитаемой дроби равен $5$. Разность числителей равна $13-5=8$. Пользуясь правилом вычитания дробей с одинаковыми знаменателями, запишем:

\[\frac{13}{18}-\frac{5}{18}=\frac{13-5}{18}=\frac{8}{18}\]

В результате вычитания получилась сокращаемая дробь (по признаку деления на $2$. Сократим получившуюся дробь на $2$:

\[\frac{8}{18}=\frac{8:2}{18:2}=\frac{4}{9}\]

Краткое решение:

\[\frac{13}{18}-\frac{5}{18}=\frac{13-5}{18}=\frac{8}{18}=\frac{4}{9}\]

Ответ: $\frac{4}{9}$

Вычитание дробей с разными знаменателями

При вычитании дробей с разными знаменателями их сводят к вычитанию дробей с одинаковыми знаменателями, для чего дроби приводят к общему знаменателю.

Правило вычитания дробей с разными знаменателями:

  1. Привести дроби к общему знаменателю (чаще всего к наименьшему общему знаменателю).

  2. Вычесть полученные дроби с одинаковыми знаменателями.

Пример 7

Вычесть из обыкновенной дроби $\frac{4}{9}$ обыкновенную дробь $\frac{5}{12}$.

Решение.

У вычитаемых дробей знаменатели разные, поэтому воспользуемся правилом вычитания дробей с разными знаменателями:

  1. Приведем дроби к наименьшему общему знаменателю: $НОК\left(9,12\right)=36$.

    Дополнительный множитель для дроби $\frac{4}{9}$ будет число $36:9=4$, а дополнительный множитель дроби $\frac{5}{12}$ будет число $36:12=3$. Получим:

    \[\frac{4}{9}-\frac{5}{12}=\frac{4\cdot 4}{9\cdot 4}-\frac{5\cdot 3}{12\cdot 3}=\frac{16}{36}-\frac{15}{36}\]
  2. Вычитаем дроби с одинаковыми знаменателями:

    \[\frac{16}{36}-\frac{15}{36}=\frac{16-15}{36}=\frac{1}{36}\]

Краткое решение:

\[\frac{4}{9}-\frac{5}{12}=\frac{16}{36}-\frac{15}{36}=\frac{16-15}{36}=\frac{1}{36}\]

Как складывать неправильные дроби с разными знаменателями. Как научиться вычитать дроби с разными знаменателями

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей — правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби — выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Одной из важнейших наук, применение которой можно увидеть в таких дисциплинах, как химия, физика и даже биология, является математика. Изучение этой науки позволяет развить некоторые умственные качества, улучшить и способность концентрироваться. Одна из тем, которые заслуживают отдельного внимания в курсе «Математика» — сложение и вычитание дробей. У многих учеников ее изучение вызывает затруднение. Возможно, наша статья поможет лучше понять эту тему.

Как вычесть дроби, знаменатели которых одинаковые

Дроби — это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:

  • Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m — b/m = (k-b)/m.

Примеры вычитания дробей, знаменатели которых одинаковы

7/19 — 3/19 = (7 — 3)/19 = 4/19.

От числителя уменьшаемой дроби «7» отнимаем числитель вычитаемой дроби «3», получаем «4». Это число мы записываем в числитель ответа, а в знаменатель ставим то же число, что было в знаменателях первой и второй дроби — «19».

На картинке ниже приведено еще несколько подобных примеров.

Рассмотрим более сложный пример, где произведено вычитание дробей с одинаковыми знаменателями:

29/47 — 3/47 — 8/47 — 2/47 — 7/47 = (29 — 3 — 8 — 2 — 7)/47 = 9/47.

От числителя уменьшаемой дроби «29» отниманием по очереди числители всех последующих дробей — «3», «8», «2», «7». В итоге получаем результат «9», который записываем в числитель ответа, а в знаменатель записываем то число, которое находится в знаменателях всех этих дробей, — «47».

Сложение дробей, имеющих одинаковый знаменатель

Сложение и вычитание обыкновенных дробей осуществляется по одному и тому же принципу.

  • Для того чтобы сложить дроби, знаменатели которых одинаковы, необходимо числители сложить. Полученное число — числитель суммы, а знаменатель останется тот же: k/m + b/m = (k + b)/m.

Рассмотрим, как это выглядит на примере:

1/4 + 2/4 = 3/4.

К числителю первой слагаемой дроби — «1» — добавляем числитель второй слагаемой дроби — «2». Результат — «3» — записываем в числитель суммы, а знаменатель оставляем тот же, что присутствовал в дробях, — «4».

Дроби с различными знаменателями и их вычитание

Действие с дробями, которые имеют одинаковый знаменатель, мы уже рассмотрели. Как видим, зная простые правила, решить подобные примеры достаточно легко. Но что делать, если необходимо произвести действие с дробями, которые имеют различные знаменатели? Многие учащиеся средних школ приходят в затруднение перед такими примерами. Но и здесь, если знать принцип решения, примеры уже не будут представлять для вас сложности. Здесь также существует правило, без которого решение подобных дробей просто невозможно.

    Чтобы произвести вычитание дробей с разными знаменателями, необходимо их привести к одинаковому наименьшему знаменателю.

    О том, как это сделать, мы поговорим подробнее.

    Свойство дроби

    Для того чтобы несколько дробей привести к одинаковому знаменателю, нужно использовать в решении главное свойство дроби: после деления или умножения числителя и знаменателя на одинаковое число получится дробь, равная данной.

    Так, например, дробь 2/3 может иметь такие знаменатели, как «6», «9», «12» и т. д., то есть она может иметь вид любого числа, которое кратно «3». После того как числитель и знаменатель мы умножим на «2», получится дробь 4/6. После того как числитель и знаменатель исходной дроби мы умножим на «3», получим 6/9, а если аналогичное действие произвести с цифрой «4», получим 8/12. Одним равенством это можно записать так:

    2/3 = 4/6 = 6/9 = 8/12…

    Как привести несколько дробей к одному и тому же знаменателю

    Рассмотрим, как привести несколько дробей к одному и тому же знаменателю. Для примера возьмем дроби, приведенные на картинке ниже. Для начала необходимо определить, какое число может стать знаменателем для их всех. Для облегчения разложим имеющиеся знаменатели на множители.

    Знаменатель дроби 1/2 и дроби 2/3 на множители разложить нельзя. Знаменатель 7/9 имеет два множителя 7/9 = 7/(3 х 3), знаменатель дроби 5/6 = 5/(2 х 3). Теперь необходимо определить, какие же множители будут наименьшими для всех этих четырех дробей. Так как в первой дроби в знаменателе имеется число «2», значит, оно должно присутствовать во всех знаменателях, в дроби 7/9 присутствуют две тройки, значит, они также обе должны присутствовать в знаменателе. Учитывая вышесказанное, определяем, что знаменатель состоит из трех множителей: 3, 2, 3 и равен 3 х 2 х 3 = 18.

    Рассмотрим первую дробь — 1/2. В ее знаменателе имеется «2», но нет ни одной цифры «3», а должно быть две. Для этого мы знаменатель умножаем на две тройки, но, согласно свойству дроби, мы и числитель должны умножить на две тройки:
    1/2 = (1 х 3 х 3)/(2 х 3 х 3) = 9/18.

    Аналогично производим действия с оставшимися дробями.

    • 2/3 — в знаменателе не хватает одной тройки и одной двойки:
      2/3 = (2 х 3 х 2)/(3 х 3 х 2) = 12/18.
    • 7/9 или 7/(3 х 3) — в знаменателе не хватает двойки:
      7/9 = (7 х 2)/(9 х 2) = 14/18.
    • 5/6 или 5/(2 х 3) — в знаменателе не хватает тройки:
      5/6 = (5 х 3)/(6 х 3) = 15/18.

    Все вместе это выглядит так:

    Как вычесть и сложить дроби, имеющие различные знаменатели

    Как уже говорилось выше, для того чтобы произвести сложение или вычитание дробей, имеющих различные знаменатели, их необходимо привести к одному знаменателю, а дальше воспользоваться правилами вычитания дробей, имеющих одинаковый знаменатель, о котором уже рассказывалось.

    Рассмотрим это на примере: 4/18 — 3/15.

    Находим кратное чисел 18 и 15:

    • Число 18 состоит из 3 х 2 х 3.
    • Число 15 состоит из 5 х 3.
    • Общее кратное будет состоять из следующих множителей 5 х 3 х 3 х 2 = 90.

    После того как знаменатель будет найден, необходимо вычислить множитель, который будет отличным для каждой дроби, то есть то число, на которое необходимо будет умножить не только знаменатель, но и числитель. Для этого число, которое мы нашли (общее кратное), делим на знаменатель той дроби, у которой нужно определить дополнительные множители.

    • 90 поделить на 15. Полученное число «6» будет множителем для 3/15.
    • 90 поделить на 18. Полученное число «5» будет множителем для 4/18.

    Следующий этап нашего решения — приведение каждой дроби к знаменателю «90».

    Как это делается, мы уже говорили. Рассмотрим, как это записывается в примере:

    (4 х 5)/(18 х 5) — (3 х 6)/(15 х 6) = 20/90 — 18/90 = 2/90 = 1/45.

    Если дроби с маленькими числами, то можно общий знаменатель определить, как в примере, приведенном на картинке ниже.

    Аналогично производится и имеющих различные знаменатели.

    Вычитание и имеющих целые части

    Вычитание дробей и их сложение мы уже детально разобрали. Но как произвести вычитание, если у дроби есть целая часть? Опять же, воспользуемся несколькими правилами:

    • Все дроби, имеющие целую часть, перевести в неправильные. Говоря простыми словами, убрать целую часть. Для этого число целой части умножаем на знаменатель дроби, полученное произведение добавляем к числителю. То число, которое получится после этих действий, — числитель неправильной дроби. Знаменатель же остается неизменным.
    • Если дроби имеют различные знаменатели, следует привести их к одинаковому.
    • Произвести сложение или вычитание с одинаковыми знаменателями.
    • При получении неправильной дроби выделить целую часть.

    Есть и иной способ, при помощи которого можно осуществить сложение и вычитание дробей с целыми частями. Для этого производятся отдельно действия с целыми частями, и отдельно действия с дробями, а результаты записываются вместе.

    Приведенный пример состоит из дробей, которые имеют одинаковый знаменатель. В том случае, когда знаменатели различны, их необходимо привести к одинаковому, а далее выполнить действия, как показано на примере.

    Вычитание дробей из целого числа

    Еще одной из разновидностей действий с дробями является тот случай, когда дробь необходимо отнять от На первый взгляд подобный пример кажется трудно решаемым. Однако здесь все довольно просто. Для его решения необходимо перевести целое число в дробь, причем с таким знаменателем, который имеется в вычитаемой дроби. Далее производим вычитание, аналогичное вычитанию с одинаковыми знаменателями. На примере это выглядит так:

    7 — 4/9 = (7 х 9)/9 — 4/9 = 53/9 — 4/9 = 49/9.

    Приведенное в этой статье вычитание дробей (6 класс) является основой для решения более сложных примеров, которые рассматриваются в последующих классах. Знания этой темы используются впоследствии для решения функций, производных и так далее. Поэтому очень важно разобраться и понять действия с дробями, рассматриваемые выше.

Разные действия с дробями можно выполнять, например, сложение дробей. Сложение дробей можно разделить на несколько видов. В каждом виде сложения дробей свои правила и алгоритм действий. Рассмотрим подробно каждый вид сложения.

Сложение дробей с одинаковыми знаменателями.

На примере посмотрим, как складывать дроби с общим знаменателем.

Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или \(\frac{1}{5}\) от всего пути. Во второй день они прошли от точки B до D или \(\frac{2}{5}\) от всего пути. Какое расстояние они прошли от начала пути до точки D?

Чтобы найти расстояние от точки A до точки D нужно сложить дроби \(\frac{1}{5} + \frac{2}{5}\).

Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.

\(\frac{1}{5} + \frac{2}{5} = \frac{1 + 2}{5} = \frac{3}{5}\)

В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:

\(\bf \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}\)

Ответ: туристы прошли \(\frac{3}{5}\) всего пути.

Сложение дробей с разными знаменателями.

Рассмотрим пример:

Нужно сложить две дроби \(\frac{3}{4}\) и \(\frac{2}{7}\).

Чтобы сложить дроби с разными знаменателями нужно сначала найти , а потом воспользоваться правилом сложения дробей с одинаковыми знаменателями.

Для знаменателей 4 и 7 общим знаменателем будет число 28. Первую дробь \(\frac{3}{4}\) нужно умножить на 7. Вторую дробь \(\frac{2}{7}\) нужно умножить на 4.

\(\frac{3}{4} + \frac{2}{7} = \frac{3 \times \color{red} {7} + 2 \times \color{red} {4}}{4 \times \color{red} {7}} = \frac{21 + 8}{28} = \frac{29}{28} = 1\frac{1}{28}\)

В буквенном виде получаем такую формулу:

\(\bf \frac{a}{b} + \frac{c}{d} = \frac{a \times d + c \times b}{b \times d}\)

Сложение смешанных чисел или смешанных дробей.

Сложение происходит по закону сложения.

У смешанных дробей складываем целые части с целыми и дробные части с дробными.

Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

Сложим смешанные числа \(3\frac{6}{11}\) и \(1\frac{3}{11}\).

\(3\frac{6}{11} + 1\frac{3}{11} = (\color{red} {3} + \color{blue} {\frac{6}{11}}) + (\color{red} {1} + \color{blue} {\frac{3}{11}}) = (\color{red} {3} + \color{red} {1}) + (\color{blue} {\frac{6}{11}} + \color{blue} {\frac{3}{11}}) = \color{red}{4} + (\color{blue} {\frac{6 + 3}{11}}) = \color{red}{4} + \color{blue} {\frac{9}{11}} = \color{red}{4} \color{blue} {\frac{9}{11}}\)

Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

Выполним сложение смешанных чисел \(7\frac{1}{8}\) и \(2\frac{1}{6}\).

Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь \(7\frac{1}{8}\) на дополнительный множитель 3, а вторую дробь \(2\frac{1}{6}\) на 4.

\(7\frac{1}{8} + 2\frac{1}{6} = 7\frac{1 \times \color{red} {3}}{8 \times \color{red} {3}} = 2\frac{1 \times \color{red} {4}}{6 \times \color{red} {4}} =7\frac{3}{24} + 2\frac{4}{24} = 9\frac{7}{24}\)

Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.

Пример №1:
Может ли сумма двух в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

\(\frac{2}{7} + \frac{3}{7} = \frac{2 + 3}{7} = \frac{5}{7}\)

Дробь \(\frac{5}{7}\) это правильная дробь, она является результатом суммы двух правильных дробей \(\frac{2}{7}\) и \(\frac{3}{7}\).

\(\frac{2}{5} + \frac{8}{9} = \frac{2 \times 9 + 8 \times 5}{5 \times 9} =\frac{18 + 40}{45} = \frac{58}{45}\)

Дробь \(\frac{58}{45}\) является неправильной дроби, она получилась в результате суммы правильных дробей \(\frac{2}{5}\) и \(\frac{8}{9}\).

Ответ: на оба вопроса ответ да.

Пример №2:
Сложите дроби: а) \(\frac{3}{11} + \frac{5}{11}\) б) \(\frac{1}{3} + \frac{2}{9}\).

а) \(\frac{3}{11} + \frac{5}{11} = \frac{3 + 5}{11} = \frac{8}{11}\)

б) \(\frac{1}{3} + \frac{2}{9} = \frac{1 \times \color{red} {3}}{3 \times \color{red} {3}} + \frac{2}{9} = \frac{3}{9} + \frac{2}{9} = \frac{5}{9}\)

Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) \(1\frac{9}{47}\) б) \(5\frac{1}{3}\)

а) \(1\frac{9}{47} = 1 + \frac{9}{47}\)

б) \(5\frac{1}{3} = 5 + \frac{1}{3}\)

Пример №4:
Вычислите сумму: а) \(8\frac{5}{7} + 2\frac{1}{7}\) б) \(2\frac{9}{13} + \frac{2}{13}\) в) \(7\frac{2}{5} + 3\frac{4}{15}\)

а) \(8\frac{5}{7} + 2\frac{1}{7} = (8 + 2) + (\frac{5}{7} + \frac{1}{7}) = 10 + \frac{6}{7} = 10\frac{6}{7}\)

б) \(2\frac{9}{13} + \frac{2}{13} = 2 + (\frac{9}{13} + \frac{2}{13}) = 2\frac{11}{13} \)

в) \(7\frac{2}{5} + 3\frac{4}{15} = 7\frac{2 \times 3}{5 \times 3} + 3\frac{4}{15} = 7\frac{6}{15} + 3\frac{4}{15} = (7 + 3)+(\frac{6}{15} + \frac{4}{15}) = 10 + \frac{10}{15} = 10\frac{10}{15} = 10\frac{2}{3}\)

Задача №1:
За обедам съели \(\frac{8}{11}\) от торта, а вечером за ужином съели \(\frac{3}{11}\). Как вы думаете торт полностью съели или нет?

Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

\(\frac{8}{11} + \frac{3}{11} = \frac{11}{11} = 1\)

Ответ: весь торт съели.

Рассмотрим дробь $\frac63$. Ее величина равна 2, так как $\frac63 =6:3 = 2$. А что произойдет, если числитель и знаменатель умножить на 2? $\frac63 \times 2=\frac{12}{6}$. Очевидно, величина дроби не изменилась, так $\frac{12}{6}$ как у также равно 2. Можно умножить числитель и знаменатель на 3 и получить $\frac{18}{9}$, или на 27 и получить $\frac{162}{81}$ или на 101 и получить $\frac{606}{303}$. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби $\frac{120}{60}$ (равной 2) разделить на 2 (результат $\frac{60}{30}$), или на 3 (результат $\frac{40}{20}$), или на 4 (результат $\frac{30}{15}$) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны целому числу .

Если числитель и знаменатель дроби $\frac{1}{3}$ умножить на 2, мы получим $\frac{2}{6}$, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа $\frac{1}{3}$ и $\frac{2}{6}$ идентичны. Сформулируем общее правило.

Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется.

Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.

Например, мы можем разделить числитель и знаменатель дроби $\frac{126}{189}$ на 63 и получить дробь $\frac{2}{3}$ с которой гораздо проще производить расчеты. Еще один пример. Числитель и знаменатель дроби $\frac{155}{31}$ можем разделить на 31 и получить дробь $\frac{5}{1}$ или 5, поскольку 5:1=5.

В этом примере мы впервые встретились с дробью, знаменатель которой равен 1 . Такие дроби играют важную роль при вычислениях. Следует помнить, что любое число можно разделить на 1 и при этом его величина не изменится. То есть $\frac{273}{1}$ равно 273; $\frac{509993}{1}$ равно 509993 и так далее. Следовательно, мы можем не разделять числа на , поскольку каждое целое число можно представить в виде дроби со знаменателем 1.

С такими дробями, знаменатель которых равен 1, можно производить те же арифметические действия, что и со всеми остальными дробями: $\frac{15}{1}+\frac{15}{1}=\frac{30}{1}$, $\frac{4}{1} \times \frac{3}{1}=\frac{12}{1}$.

Вы можете спросить, какой прок от того, что мы представим целое число в виде дроби, у которой под чертой будет стоять единица, ведь с целым числом работать удобнее. Но дело в том, что представление целого числа в виде дроби дает нам возможность эффективнее производить различные действия, когда мы имеем дело одновременно и с целыми, и с дробными числами. Например, чтобы научится складывать дроби с разными знаменателями . Предположим, нам надо сложить $\frac{1}{3}$ и $\frac{1}{5}$.

Мы знаем, что складывать можно только те дроби, знаменатели которых равны. Значит, нам нужно научиться приводить дроби к такому виду, когда их знаменатели равны. В этом случае нам опять пригодится то, что можно умножать числитель и знаменатель дроби на одно и то же число без изменения ее величины.

Сначала умножим числитель и знаменатель дроби $\frac{1}{3}$ на 5. Получим $\frac{5}{15}$, величина дроби не изменилась. Затем умножим числитель и знаменатель дроби $\frac{1}{5}$ на 3. Получим $\frac{3}{15}$, опять величина дроби не изменилась. Следовательно, $\frac{1}{3}+\frac{1}{5}=\frac{5}{15}+\frac{3}{15}=\frac{8}{15}$.

Теперь попробуем применить эту систему к сложению чисел, содержащих как целую, так и дробную части.

Нам надо сложить $3 + \frac{1}{3}+1\frac{1}{4}$. Сначала переведем все слагаемые в форму дробей и получим: $\frac31 + \frac{1}{3}+\frac{5}{4}$. Теперь нам надо привести все дроби к общему знаменателю, для этого мы числитель и знаменатель первой дроби умножаем на 12, второй — на 4, а третьей — на 3. В результате получаем $\frac{36}{12} + \frac{4}{12}+\frac{15}{12}$, что равно $\frac{55}{12}$. Если вы хотите избавиться от неправильной дроби , ее можно превратить в число, состоящее из целой и дробной частей: $\frac{55}{12} = \frac{48}{12}+\frac{7}{12}$ или $4\frac{7}{12}$.

Все правила, позволяющие проводить операции с дробями , которые мы с вами только что изучили, также справедливы и в случае отрицательных чисел. Так, -1: 3 можно записать как $\frac{-1}{3}$, а 1: (-3) как $\frac{1}{-3}$.

Поскольку как при делении отрицательного числа на положительное, так и при деле­нии положительного числа на отрицатель­ное в результате мы получаем отрицатель­ные числа, в обоих случаях мы получим ответ в виде отрицательного числа. То есть

$(-1) : 3 = \frac{1}{3}$ или $1: (-3) = \frac{1}{-3}$. Знак минус при таком написании относится ко всей дроби целиком, а не отдельно к числителю или знаменателю.

С другой стороны, (-1) : (-3) можно записать как $\frac{-1}{-3}$, а поскольку при деле­нии отрицательного числа на отрицатель­ное число мы получаем положительное число, то $\frac{-1}{-3}$ можно записать как $+\frac{1}{3}$.

Сложение и вычитание отрицательных дробей проводят по той же схеме, что и сложение, и вычитание положительных дро­бей. Например, что такое $1- 1\frac13$? Пред­ставим оба числа в виде дробей и получим $\frac{1}{1}-\frac{4}{3}$. Приведем дроби к общему знаменателю и получим $\frac{1 \times 3}{1 \times 3}-\frac{4}{3}$, то есть $\frac{3}{3}-\frac{4}{3}$, или $-\frac{1}{3}$.

Сложение и вычитание дробей с одинаковыми знаменателями
Сложение и вычитание дробей с разными знаменателями
Понятие о НОК
Приведение дробей к одному знаменателю
Как сложить целое число и дробь

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

2 Сложение и вычитание дробей с разными знаменателями

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

4Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители . Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

5Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например.

Правила вычитания дробей | Study.com

Правила вычитания дробей

Правило 1: Дроби должны иметь общий знаменатель.

Это означает, что знаменатели или нижние числа дробей должны быть одинаковыми, что мы называем общими знаменателями . Если они не одинаковые, то мы найдем общий знаменатель и сделаем их одинаковыми.

Правило 2: Если у вас есть общий знаменатель, он не меняется.

Другими словами, когда вы вычитаете свои дроби, вы вычитаете только числители или числа сверху.

Правило 3: При необходимости упростите ответ.

Если в вашем ответе числитель и знаменатель имеют общий множитель, используйте этот множитель, чтобы уменьшить дробь.

Пример с одинаковыми знаменателями

Вот пример задачи на вычитание дробей, которая уже имеет общие знаменатели:

Вычитание дроби с моделью

Поскольку знаменатели одинаковы, единственное, что вам нужно сделать, это вычесть верхние числа! Знаменатель остается прежним.Таким образом, для этой задачи 2 — 1 = 1, тогда 3 остается прежним, поэтому

2/3 — 1/3 = 1/3

Пример с разными знаменателями

Давайте рассмотрим эту задачу на вычитание дробей с разными знаменателями:

7/8 — 1/4 = ?

Используя эквивалентных дробей , дробей, которые выглядят по-разному, но на самом деле представляют одно и то же число, мы можем найти общий знаменатель и превратить 1/4 в 2/8, у которого теперь тот же знаменатель, что и у 7/8.

Эквивалентная дробь 1/4 = 2/8

Итак, 1/4 = 2/8.Вот картинка!

Эквивалентная модель дроби и вычитания

Теперь, когда вы нашли дробь, эквивалентную 1/4 (2/8), вы готовы к вычитанию!

7/8 — 2/8 = 5/8, потому что 7 — 2 = 5 и знаменатель (8) остается прежним.

Пример вычитания, требующий упрощения

В этом примере давайте объединим все, что мы узнали:

1/2 — 1/6 = ?

Правило 1 говорит, что наши знаменатели должны быть одинаковыми.Поскольку это не так, давайте найдем общий знаменатель:

Используя то, что мы только что узнали об эквивалентных дробях, мы умножаем 1/2 x 3/3 и получаем 3/6, у которого теперь тот же знаменатель, 6, что и у другой дроби.

Правило 2 говорит, что когда у нас есть общий знаменатель, мы просто вычитаем числители и сохраняем тот же знаменатель. В 2/6 и 2, и 6 можно поровну разделить на 2.

2/6 ÷ 2/2 = 1/3.

Смотрите, это так же просто, как правило 1, 2 и 3!!

Резюме урока

При вычитании дробей необходимо соблюдать три правила. Первое правило состоит в том, что наши дроби должны иметь общих знаменателей . Если знаменатели в каждой дроби не совпадают, используйте процесс эквивалентной дроби , чтобы сделать их одинаковыми, прежде чем переходить ко второму правилу, которое заключается в том, что вы вычитаете только числители, сохраняя знаменатель прежним. Наконец, третье правило гласит, что при необходимости упростите свой ответ!

Вычитание дробей

Возможно, вы захотите сначала прочитать «Сложение дробей».

Есть 3 простых шага для вычитания дробей

  • Шаг 1. Убедитесь, что нижние числа (знаменатели) совпадают
  • Шаг 2. Вычтите верхние числа (числители). Положите ответ над тем же знаменателем.
  • Шаг 3. Упростите дробь (при необходимости).

Пример 1:

3 4 1 4

Шаг 1 .Нижние цифры уже одинаковые. Сразу переходите к шагу 2.

Шаг 2 . Вычтите верхние числа и поставьте ответ над тем же знаменателем:

.

3 4 1 4 знак равно 3 − 1 4 знак равно 2 4


Шаг 3
. Упростите дробь:

2 4 знак равно 1 2

(Если вы не уверены в последнем шаге, см. Эквивалентные дроби.)

 

Пример 2:

1 2 1 6

Шаг 1 . Нижние цифры разные. Видите, как кусочки разного размера? Нам нужно сделать их одинаковыми, прежде чем мы сможем продолжить, потому что мы не можем вычесть их из следующим образом:

 

Чтобы нижние числа были одинаковыми, умножьте верхнюю и нижнюю часть первой дроби ( 1 / 2 ) на 3 следующим образом:

× 3
× 3

А теперь наш вопрос выглядит так:

3 6 1 6
 

Нижние числа (знаменатели) совпадают, поэтому мы можем перейти к шагу 2.

 

Шаг 2 . Вычтите верхние числа и поставьте ответ над тем же знаменателем:

.

3 6 1 6 знак равно 3 − 1 6 знак равно 2 6

На картинке это выглядит так:


Шаг 3 . Упростите дробь:

2 6 знак равно 1 3

С ручкой и бумагой

А вот как это сделать ручкой и бумагой (нажмите кнопку воспроизведения):

 

Вычитание смешанных дробей

У меня есть специальная страница о сложении и вычитании смешанных дробей.

Уравнивание знаменателей

В предыдущем примере было легко сделать знаменатели одинаковыми, но это может быть сложнее … поэтому вам может понадобиться использовать либо

Они оба работают, используйте тот, который вам больше нравится!

Пример: кексы

Вы хотите продавать кексы на рынке:

  • Вам платят 2 5 от общего объема продаж
  • Но ты должен заплатить 1 4 от общего объема продаж для киоска

Сколько вы получаете?

 

Нам нужно вычесть 1 4 от 2 5

2 5 1 4 знак равно ? ?

Первые делают нижние числа (знаменатели) одинаковыми.

Умножить верх и низ 2 / 5 на 4 :

2 × 4 5 × 4 1 4 знак равно ? ?

И умножить верх и низ 1 / 4 на 5 :

2 × 4 5 × 4 1 × 5 4 × 5 знак равно ? ?

Теперь делаем вычисления:

8 20 5 20 знак равно 8 − 5 20 знак равно 3 20

Ответ: вы можете оставить себе 3 20 от общего объема продаж.

 

Вычитание дробей с разными знаменателями

При вычитании дробей с разными знаменателями мы следуем тому же процессу , который мы использовали для сложения разнородных дробей. Но поскольку не все начинают со сложения, мы обеспечиваем одинаковый уровень детализации для вычитания.

Прежде всего, при вычитании дробей с разными знаменателями первый шаг в Правиле говорит о том, что мы должны изменить эти дроби так, чтобы у них был « одинаковый знаменатель ».

Вот шаги для вычитания дробей с разными знаменателями. Мы разберем каждый шаг 90 123 так же, как и до 90 124, чтобы убедиться, что вы его поняли. Затем мы вычтем несколько более жестких чисел. И, наконец, мы поможем вам собрать все воедино. Хорошо!

Итак, вот шаги.

  1. Постройте каждую дробь так, чтобы оба знаменателя были равны. Помните , при вычитании дробей знаменатели должны быть равны . Поэтому мы должны сначала выполнить этот шаг.На самом деле это означает, что вы должны найти то, что называется общим знаменателем. Большую часть времени вам придется решать задачу, используя метод наименьшего общего знаменателя (LCD). В любом случае вы превратите каждую дробь в эквивалентную дробь.
  2. Перепишите каждую эквивалентную дробь , используя этот новый знаменатель
  3. Теперь вы можете вычесть числители и сохранить знаменатели эквивалентных дробей.
  4. Перепишите свой ответ в виде упрощенной или сокращенной дроби, если это необходимо.

Но имейте в виду , если будете делать домашнюю работу, то обязательно ответьте на задачи в форме запрошенные для в задании.

Итак, начнем с…

Основы вычитания дробей с разными знаменателями

Вычесть: 1/2 – 1/3

Обратите внимание, что общий размер нашей точки отсчета
(Всего) ТОЧНО такой же.

Шаг #1 в нашем правиле говорит нам, что знаменатели должны быть равны .И самый простой способ найти общий знаменатель — просто умножить знаменателя на .

Итак, давайте сделаем это сейчас…

2 х 3 = 6

Общий знаменатель для 1/2 и 1/3 равен 6

Шаг №2 – Перепишите каждую эквивалентную дробь, используя этот новый знаменатель.

С…

1/2 соответствует 3/6

И…

1/3 соответствует 2/6

Мы перепишем наше уравнение, чтобы оно выглядело…

Вычесть: 3/6 – 2/6

Теперь мы готовы сделать Шаг №3 – Вычесть из числителей и сохранить знаменатель эквивалентных дробей (который равен 6).

Итак, у нас получается…

3/6 – 2/6 = (3 – 2 )/6 = 1/6

=

Наконец, Шаг № 4 – Перепишите свой ответ в виде упрощенной или сокращенной дроби, если это необходимо.

В нашем примере ответ ( 1/6 ) уже находится в своей простейшей форме . Так что никаких дальнейших действий не требуется!

Вот оно!

Быстрый и простой способ вычитания дробей с разными знаменателями.

Помните, всегда указывайте свой ответ в форме , которая запрашивается для в ваших инструкциях.

Помощники по домашнему заданию

Эти замечательные советы действительно упростят вашу домашнюю работу по дробям . Нажмите здесь >

Как делать дроби

Учебники о том, как складывать, вычитать, умножать и делить дроби! Нажмите здесь, чтобы начать с добавления >

Калькулятор дробей

Узнайте, как решать задачи на дроби, а затем проверьте свою работу с помощью нашего онлайн-калькулятора дробей .Нажмите здесь >

Рабочие листы дробей

Загружаемые бесплатно рабочие листы дадут вам массу практики, чтобы научиться решать задачи на дроби. Нажмите здесь >

Сложение и вычитание дробей с помощью пошагового решения математических задач

Вы много раз сталкивались с дробями с самого начала изучения математики. Они встречаются в формулах и во многих повседневных практических задачах. Однако арифметические дроби состоят строго из чисел.Теперь мы изучим действия над дробями, компоненты которых являются алгебраическими выражениями.

РЕШЕНИЕ УРАВНЕНИЙ, ВКЛЮЧАЮЩИХ ЗНАКОВЫЕ ЧИСЛА

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Разложите числитель и знаменатель дроби на множители.
  2. Упростите алгебраические дроби.

Алгебраическая дробь — это указанное отношение двух алгебраических выражений.

При изучении арифметики вам сказали, что дробные ответы всегда следует оставлять в сокращенной или упрощенной форме.Для дроби, до которой вы «уменьшили», разделив числитель и знаменатель на 4. Дробь нельзя уменьшить, потому что никакое число (кроме 1) не будет делить и числитель, и знаменатель. Упрощая дроби таким образом, вы использовали следующее определение.

Дробь в является упрощенной (или сокращенной) формой , если числитель и знаменатель не содержат общего множителя (кроме 1).

Дробь в упрощенной форме, поскольку числитель 2 и знаменатель 3 не имеют общего делителя, кроме единицы.

Для получения упрощенной формы дроби применяется следующее правило.

Чтобы упростить дробь , полностью разложите числитель и знаменатель, а затем разделите числитель и знаменатель на все общие множители.

Дробь , однако, не в упрощенной форме, так как числитель и знаменатель имеют общий делитель 2.

Далее делим на общие множители, получаем

Помните, множитель, разделенный сам на себя, равен 1.

Теперь разделите на общий множитель (x + 2) как в числителе, так и в знаменателе, чтобы получить

Мы можем разделить только общие факторы, но не общие термины.

В таком выражении, как у некоторых студентов возникает соблазн разделить тройки. Обратите внимание, что это неправильное , поскольку они являются терминами , а не факторами.

Обратите внимание, что даже если мы смогли разложить числитель и знаменатель на множители, мы все равно не можем разделить, поскольку у них нет общих множителей.Данная дробь уже в упрощенном виде.

Тот факт, что для данной дроби может потребоваться любой из изученных вами методов факторинга, еще раз подчеркивает важность владения факторингом.

Решение Здесь вы можете использовать «пробы и ошибки» для числителя и «группировку» для знаменателя.

Здесь (x + 2) — общий множитель, поэтому можно разделить и числитель, и знаменатель.

Обратите внимание, что числитель 2x + 5 можно записать как (2x 4- 5) * 1. Таким образом, при делении множителя (2x + 5) остается множитель 1.

Решение Этот тип проблемы требует особого внимания, так как является частой причиной ошибки. На первый взгляд множители могут быть ошибочно приняты за общие, или дробь может быть ошибочно принята за уже упрощенную. Обратите внимание, что факторы нельзя разделить, поскольку знаки не позволяют им быть идентичными.Если, однако, минус 1 факторизуется от одного из множителей, то есть подобные множители, и деление может быть выполнено.

Любые множители в виде a — b и b — a являются отрицательными по отношению друг к другу, таким образом, 2x — 3 и 3 — 2x являются отрицательными по отношению друг к другу.

Все это эквивалентные формы одного и того же выражения. Предпочтительной формой будет та, в которой используется наименьшее количество письменных знаков.
Всегда проверяйте свой ответ, чтобы убедиться, что он эквивалентен форме, указанной в разделе ответов.

УМНОЖЕНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Числители и знаменатели всех умножаемых дробей.
  2. Определить и разделить на все общие множители.
  3. Запишите произведение в простейшей форме.

Алгебраическая дробь — это указанное отношение двух алгебраических выражений.

— это определение произведения двух дробей.На словах это означает «умножить числитель на числитель и знаменатель на знаменатель». Вы использовали это правило много раз в арифметике, когда умножали дроби.

Однако помните, что все дробные ответы должны быть в упрощенной форме. Мы могли бы следовать приведенному выше определению, а затем упростить ответ, как в предыдущем разделе. Но с алгебраическими дробями это может привести к очень сложным выражениям. Следующее правило позволяет нам упрощать по мере умножения, поэтому ответ будет в упрощенной форме.

При умножении алгебраических дробей полностью разложите все числители и знаменатели, затем перед умножением разделите на все множители, общие для числителя и знаменателя.

Произведение остальных множителей числителя будет числителем ответа, а произведение остальных множителей знаменателя будет знаменателем ответа.

Опять же, помните, что общие факторы должны быть совершенно одинаковыми.

Мы будем использовать точку * для обозначения умножения, поскольку использование X можно спутать с переменной x.

Обратите внимание, что (x + 2) и (2 + x) одинаковы, но (x — 4) и (4 — x) являются отрицательными значениями друг друга.
Опять же, есть много возможных форм для окончательных ответов. Приведенная здесь форма предпочтительнее, поскольку она содержит наименьшее количество знаков.

В этой проблеме много факторов. Будь осторожен!

ДЕЛЕНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Заменить задачу на деление связанной задачей на умножение.
  2. Деление алгебраических дробей.

Деление дробей определяется с помощью умножения.

Чтобы разделить, умножить на величину, обратную делителю.

Чтобы разделить одно алгебраическое выражение на другое , инвертируйте делитель и измените операцию на умножение.

Делитель следует за знаком. Не инвертируйте неправильную дробь.

Если знаменатель не указан, считается, что он равен 1.

После того, как задача на деление заменена на задачу на умножение, она завершается так же, как и в предыдущем разделе.

Опять же, обратите внимание, что инвертируется только дробь, следующая за знаком.

ПОИСК НАИМЕНЬШЕГО ОБЩЕГО знаменателя

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Полностью разложить знаменатель дроби на множители.
  2. Найдите наименьший общий знаменатель двух или более дробей.

Правило сложения и вычитания дробей требует, чтобы объединяемые дроби имели одинаковый знаменатель. В качестве подготовки к выполнению этих операций мы теперь исследуем метод нахождения наименьшего общего знаменателя для любой группы дробей.

общий знаменатель лот двух или более дробей представляет собой выражение, содержащее все множители знаменателя каждой дроби.Наименьший общий знаменатель содержит минимальное количество множителей, чтобы быть общим знаменателем.

Наименьший общий знаменатель набора дробей иногда называют наименьшим общим кратным знаменателей.

Ментальная арифметика позволит вам найти наименьший общий знаменатель для небольших чисел. Если попросить прибавить , то легко получить наименьший общий знаменатель 12. Если спросить, как мы получили 12, мы просто знаем, что 12 — это наименьшее число, которое делится и на 4, и на 6.Однако необходим более сложный метод, если числа больше или если дроби являются алгебраическими дробями.

Пример 1 Найдите наименьший общий знаменатель числа

Решение Эта задача потребовала бы значительного количества предположений или возможностей тестирования, если бы у нас не было общего метода.

Мы могли бы получить общий знаменатель этих дробей, найдя произведение
12 х 14 х 15 х 18 = 45 360.
Хотя это число является общим знаменателем, оно не является наименьшим общим знаменателем.

Рассмотрим определение. Из него мы знаем, что общий знаменатель этих чисел должен содержать все множители каждого из них. Другими словами, мы ищем наименьшее число, которое делится на 12, 14, 15 и 18.
Сначала полностью разложите каждое число.

Искомое число должно содержать (2)(2)(3), чтобы оно делилось на 12. Оно должно содержать (2)(7), чтобы делиться на 14, и так далее. Выполните следующие действия:
Запишите множители первого числа 12.
(2)(2)(3)
Теперь посмотрим на множители следующего числа, 14, и увидим, что нам нужно (2)(7). Но так как у нас уже есть 2, нам нужен только множитель (7). Это дает
(2)(2)(3)(7).
Теперь это число делится и на 12, и на 14. Делители следующего числа, 15, равны (3) и (5). Поскольку у нас уже есть 3, нам нужен только коэффициент 5, что дает
(2)(2)(3)(7)(5).
Теперь это число делится на 12, 14 и 15. Делители следующего числа, 18, равны (2)(3)(3). У нас уже есть 2 и одна 3.Следовательно, нам нужно еще 3.
(2)(2)(3)(7)(5)(3) = 1,260
Это число, 1,260, является общим знаменателем 12, 14, 15 и 18, поскольку оно содержит все факторы каждого и, следовательно, делится на каждый. Это наименьший общий знаменатель, потому что он содержит только те множители, которые необходимы для того, чтобы он делился на 12, 14, 15 и 18.

Обратите внимание, что 1260 значительно меньше, чем число, полученное простым нахождением произведения всех знаменателей.

Предыдущее обсуждение приводит к правилу получения наименьшего общего знаменателя для любого количества дробей, будь то числа или алгебраические выражения.

Чтобы найти наименьший общий знаменатель двух или более дробей:
1. Полностью разложить каждый знаменатель на множители.
2. Запишите знаменатель первой дроби в разложенном виде как предложенный общий знаменатель.
3. Путем проверки определить, какие факторы второго знаменателя еще не входят в предлагаемый общий знаменатель, и включить их.
4. Повторите третий шаг для каждой фракции.

После освоения эта пошаговая процедура значительно упростит вашу работу.

Обратите внимание, что при нахождении наименьшего общего знаменателя мы не обращаем внимания на числитель.
Это всего лишь знаменатель первой дроби.

При проверке второго знаменателя нам нужен дополнительный множитель (x — 2). Наименьший общий знаменатель равен (3x — 4)(2x + l)(x — 2).

Опять же, числители не влияют на то, каким будет наименьший общий знаменатель.
Иногда наименьший общий знаменатель обозначается аббревиатурой LCD.

Обратите внимание, что x 2 является множителем в знаменателе первой дроби, но не во второй дроби.

Здесь у нас три знаменателя.

Решение
Первый знаменатель: 3(x + 2)
Второй знаменатель: 2(2)(3)
Третий знаменатель: 2(x + 3)(x + 2)
Предлагаемый общий знаменатель: 3( x + 2)
Изучив второй знаменатель, мы видим, что нам нужно включить множители (2) и (2).Теперь у нас есть 2(2)(3)(x + 2). Изучив третий знаменатель, мы видим, что нам нужен множитель (x + 3). Наименьший общий знаменатель равен 2(2)(3)(x + 2)(x + 3) или 12(x + 2)(x + 3).

ЭКВИВАЛЕНТНЫЕ ДРОИ

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Понять фундаментальный принцип дробей.
  2. Заменить дробь эквивалентной дробью.

При дальнейшей подготовке к сложению и вычитанию дробей мы должны иметь возможность заменить заданную дробь дробью с новым знаменателем без изменения значения исходной дроби.

называется фундаментальным принципом дробей .

Когда мы анализируем это утверждение, мы видим две эквивалентные дроби и отмечаем, что числитель и знаменатель умножаются на одно и то же ненулевое число, a.

Чтобы преобразовать дробь в эквивалентную дробь , умножьте числитель и знаменатель на одно и то же ненулевое выражение.

Почему выражение должно быть ненулевым?

Вы можете думать об этом процессе как об обратном сокращению дробей.

Решение Поскольку новый знаменатель находится в факторизованной форме, при проверке мы видим, что первоначальный знаменатель (2x + 3) был умножен на множитель (x — 4). Следовательно, исходный числитель (х + 1) также необходимо умножить на множитель (х — 4), что даст

.

Обратите внимание, что в окончательной форме дроби мы умножили множители в числителе, но оставили знаменатель в виде множителей. Это предпочтительный способ написания ответа.

Решение Поскольку исходный знаменатель (x — 3) был умножен на (2) и (x + 1), исходный числитель (2x + 1) также необходимо умножить на (2) и (x + 1).

Опять же, обратите внимание на форму ответа.

СЛОЖЕНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Сложите дроби с одинаковыми знаменателями.
  2. Найдите наименьший общий знаменатель двух или более дробей.
  3. Применить правило сложения дробей.

Теперь мы готовы складывать алгебраические дроби, используя методы, описанные в двух предыдущих разделах. Следует вспомнить следующее правило из арифметики.

Сумма двух или более дробей, имеющих одинаковый знаменатель, равна сумме числителей над их общим знаменателем.

Обратите внимание, что это правило допускает только сумму дробей с одинаковым знаменателем.Другими словами, две или более дроби могут быть сложены только в том случае, если они имеют общий знаменатель. Правило сложения любых двух или более дробей потребует навыков, полученных в последних двух разделах, в дополнение к знанию комбинирования одинаковых терминов.

Чтобы сложить две или более дроби, выполните следующие действия:
Шаг 1 Найдите наименьший общий знаменатель (НОД) для всех дробей, используя метод, описанный в разделе 9-4.
Шаг 2 Замените каждую дробь эквивалентной дробью с наименьшим общим знаменателем (раздел 9-5).
Шаг 3 Найдите сумму числителей и поместите эту сумму на наименьший общий знаменатель.
Шаг 4 Упростите (или уменьшите) дробь, полученную на шаге 3.

Эти четыре шага следует использовать при сложении дробей.

Не забудьте умножить числитель и знаменатель на одно и то же выражение.

Этот ответ в сокращенной форме.

Опять же, не забудьте умножить числитель на то же выражение, на которое вы умножили знаменатель.

Всякий раз, когда знаменатели не имеют общих множителей, LCD является произведением знаменателей.

Здесь только первая дробь должна быть изменена по форме.

Сумма

Обратите внимание, что числитель 3x — 15 можно разложить как 3(x — 5), а множитель (x — 5) соответствует множителю в знаменателе.

Мы можем использовать меньше письменных шагов, если заметим, что «общий знаменатель» означает, что все дроби имеют один и тот же знаменатель, а если у всех один и тот же знаменатель, то знаменатель необходимо написать только один раз. Чтобы проиллюстрировать это, мы переработаем предыдущий пример.

Этот ярлык подходит, если вы не забываете умножать числители на необходимые коэффициенты.

Опять же, знаменатели не имеют общих множителей, поэтому LCD является произведением всех трех знаменателей.

ВЫЧИТАНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Вычитание дробей с одинаковыми знаменателями.
  2. Применить правило вычитания дробей с разными знаменателями.

Вычитание определяется в терминах сложения, поэтому метод вычитания алгебраических дробей будет таким же, как сложение алгебраических дробей, описанный в предыдущем разделе.Вы скоро поймете, почему мы представили их отдельно.

Разность любых двух дробей с одинаковым знаменателем равна разнице их числителей над их общим знаменателем.

Обратите внимание, что это правило совпадает с правилом сложения двух дробей с одинаковым знаменателем.

Таким образом, шаги для вычитания дробей такие же, как и для сложения дробей.

Чтобы вычесть дроби:
Шаг 1 Найдите наименьший общий знаменатель двух дробей.
Шаг 2 Замените каждую дробь эквивалентной дробью с наименьшим общим знаменателем.
Шаг 3 Найдите разность числителей и поместите этот результат над наименьшим общим знаменателем.
Шаг 4 Упростите (или уменьшите) дробь, полученную на шаге 3.

Возникает очевидный вопрос: «Если эти две операции одинаковы, зачем изучать их по отдельности?» Ответ заключается в том, что вычитание порождает очень распространенную ошибку, которой ученик должен быть готов избежать.

Обратите внимание, что мы вычитаем весь числитель второй дроби. Поэтому будет хорошей практикой заключать весь числитель в круглые скобки со знаком вычитания перед ним.

Упомянутая ошибка часто возникает из-за того, что знак минус влияет на весь числитель второй дроби, а НЕ только на первый член.

Это произойдет, если вы не используете круглые скобки.

Стрелка указывает на ошибку, наиболее часто допускаемую при вычитании дробей. Лучший способ избежать этого — всегда использовать скобки

.

, и вы, скорее всего, не сможете правильно изменить знак.

Обратите внимание, мы заключили в скобки числитель второй дроби.
Обратите внимание, что сначала мы умножили (x — 4) (2x — 1), а затем умножили (2×2 — 9x + 4) на -l. Одновременно умножать и менять знаки значит вызывать ошибку.

СЛОЖНЫЕ ДРОИ

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Распознавание сложной дроби.
  2. Упростите сложную дробь.

Дроби определяются как указанное частное двух выражений. В этом разделе мы представим метод упрощения дробей, в которых числитель, знаменатель или оба они сами состоят из дробей. Такие фракции называются сложными фракциями .

Таким образом, если числитель и знаменатель сложной дроби составлены из простых дробей, ее можно упростить, разделив числитель на знаменатель.

Обычно более эффективный метод упрощения сложной дроби включает использование основного принципа дробей. Умножаем и числитель, и знаменатель на общий знаменатель всех отдельных дробей сложной дроби.

Вспомните, что фундаментальный принцип дробей утверждает

Мы будем использовать фундаментальный принцип, чтобы снова упростить

ЖК-дисплей 3 и 4 равен 12.Таким образом

Отдельные фракции

Этот ответ можно записать как смешанное число

Убедитесь, что каждый член как в числителе, так и в знаменателе умножается на ЖК-дисплей.

Нужен ЖКИ отдельных дробей, y не дробь.

УРАВНЕНИЯ, ИМЕЮЩИЕ АЛГЕБРАИЧЕСКИЕ ДРОИ

ЦЕЛИ

После завершения этого раздела вы сможете:

  1. Применить метод решения дробных уравнений.
  2. Определите, когда дробное уравнение не имеет решения.

В главе 2 мы столкнулись с уравнениями, в которых есть дроби. Однако все эти дроби имели числовые знаменатели. Теперь обсудим уравнения, в знаменателях которых есть дроби с переменными.

Метод решения этих уравнений будет таким же, как и в главе 2, но есть некоторые дополнительные предостережения, к которым вы должны быть готовы.

Вы можете вернуться к некоторым примерам в главе 3, чтобы освежить свою память.

Чтобы освежить вашу память, здесь повторяются шаги решения таких уравнений.
Во-первых: Исключите дроби, умножив каждый член уравнения на наименьший общий знаменатель всех дробей в уравнении.
Второй: упростите, объединив одинаковые члены с каждой стороны уравнения.
Третье: Сложите или вычтите необходимые количества, чтобы получить неизвестное количество с одной стороны и числа арифметики с другой.
Четвертое: Разделить на коэффициент неизвестной величины.
Пятое: проверьте свой ответ.

Основное отличие решения уравнений с арифметическими дробями от уравнений с алгебраическими дробями заключается в проверке. Процесс проверки будет заключаться не только в том, чтобы найти возможную ошибку, но и в том, чтобы определить, есть ли у уравнения ответ.

Последняя возможность возникает потому, что алгебраические дроби умножаются на неизвестную величину. Эта неизвестная величина может быть на самом деле равна нулю, что сделает всю работу недействительной.

Помните, мы можем умножать каждую часть уравнения только на ненулевую величину.

Это означает, что ни (x — 1), ни (x + 1) не могут быть равны нулю.
Если x = 1, то множитель (x — 1) равен нулю и у нас проблемы!

Поскольку деление на ноль невозможно, мы должны заключить, что x = 1 не является решением. А так как мы не ошиблись в вычислениях, то должны заключить, что это уравнение не имеет решения.
Правильный ответ: «нет решения».

Проверка необходима в алгебраических уравнениях.В противном случае вы могли бы проделать большую работу — не ошибитесь — и все равно упустить проблемы.
Другими словами, x = 1 не является решением, поскольку дает утверждение, не имеющее смысла.

Помните, что проверка является чрезвычайно важным шагом, так как она определит, есть решение или нет.

Обратите внимание, что в этих примерах, когда у нас есть x 2 членов, они сокращаются, и мы остаемся с линейным уравнением.Если бы они не сокращались, в уравнении было бы член x 2 . Уравнение этого типа (квадратное) будет рассмотрено в главе 11.

Таким образом, x = -5 является решением.

Следовательно, 11 — это количество, на которое увеличился числитель.

ОБЗОР

Ключевые слова

  • Алгебраическая дробь — это указанное отношение двух алгебраических выражений.
  • Дробь представляет собой упрощенную форму , если числитель и знаменатель не имеют общего делителя, кроме 1.
  • Общий знаменатель для двух или более дробей — это выражение, содержащее все множители знаменателей каждой дроби.
  • наименьший общий знаменатель содержит минимальное количество множителей, чтобы быть общим знаменателем.
  • Фундаментальный принцип дробей есть
  • Сложные дроби — это дроби, в которых числитель или знаменатель (или оба) содержат дробь.

Процедуры

  • Чтобы упростить или сократить дроби до наименьших членов, разложите числитель и знаменатель и разделите на все подобные множители.
  • Чтобы умножить дроби, умножьте все числители и знаменатели и разделите на все подобные множители перед умножением.
  • Чтобы разделить на дробь, переверните делитель, а затем умножьте.
  • Чтобы найти наименьший общий знаменатель (НОД), сначала факторизуйте все знаменатели, а затем найдите знаменатель, который содержит все множители каждого знаменателя, но не содержит ненужных множителей.
  • Чтобы преобразовать дробь в эквивалентную дробь, умножьте числитель и знаменатель на одно и то же ненулевое выражение.
  • Чтобы сложить дроби, выполните следующие действия:
    1. Найдите наименьший общий знаменатель.
    2. Измените каждую дробь на эквивалентную дробь, в знаменателе которой будет ЖК-дисплей.
    3. Добавьте числители и поместите над ЖК-дисплеем.
    4. Упростите или сократите ответ.
  • Чтобы вычесть дроби, действуйте так же, как сложение, но объединяйте числители путем вычитания.
  • Сложные дроби можно упростить, умножив числитель и знаменатель сложной дроби на ЖКД всех дробей в выражении.
  • Чтобы решить уравнения, содержащие дроби, сначала исключите все дроби, умножив все уравнение на ЖК-дисплей участвующих дробей. Полученное уравнение затем решается, и решение должно быть проверено в исходном уравнении.

Сложение алгебраических дробей. Полный курс алгебры

23

Различные знаменатели — LCM

2-й уровень

ЕСТЬ ОДНО ПРАВИЛО для сложения или вычитания дробей: Знаменатели должны быть одинаковыми — как и в арифметике.

 


 +   б
в
 =   а + б
    в

Сложите числители и поместите их сумму
над общим знаменателем.

Пример 1. 6 x + 3
    5
 +   4 x − 1
    5
 =   10 x + 2
     5

Знаменатели совпадают. Сложите числители как одинаковые члены.

Пример 2.      6 x + 3
     5
 −   4 x − 1
    5

Чтобы вычесть, измените знаки вычитаемого и сложите.

6 x + 3
     5
 −   4 x − 1
    5
 =   6 x + 3 − 4 x + 1
          5
 =   2 x + 4
    5

Проблема 1.

Чтобы увидеть ответ, наведите указатель мыши на цветную область.
Чтобы снова закрыть ответ, нажмите «Обновить» («Reload»).
Сначала решай задачу сам!

  а)    x
3
 +   г
3
 =   x + у
   3
    б)    5
х
 −   2
х
 =   3
х
  в)        x    
x − 1
 +   х + 1
х — 1
 =   2 x + 1
  x − 1
    г)    3 x − 4
  x − 4
 +   х — 5
х — 4
 =   4 x − 9
  x − 4
  д)    6 x + 1
  x − 3
 −   4 x + 5
  x − 3
 =   6 x + 1 − 4 x − 5
        x − 3
 =   2 x − 4
  x − 3
  е)    2 x − 3
  x − 2
 −   х — 4
х — 2
 =   2 x − 3 − x + 4
        x − 2
 =   х + 1
х — 2

Различные знаменатели — LCM

Чтобы складывать дроби с разными знаменателями, мы должны научиться строить наименьшее общее кратное ряда членов.

Наименьшее общее кратное (НОК) ряда терминов
— это наименьшее произведение, содержащее все множители каждого термина.

Например, рассмотрим эту серию из трех терминов:

pq     pr     пс

Теперь мы построим их LCM — фактор за фактором.

Для начала у него будут множители первого члена:

LCM = pq

Переходя ко второму члену, LCM должен иметь факторы pr .Но у него уже есть множитель p — поэтому нам нужно добавить только множитель r :

LCM = pqr

Наконец, переходя к последнему члену, LCM должен содержать множители ps . Но снова у него есть множитель p , поэтому нам нужно добавить только множитель s :

LCM = pqrs .

Этот продукт является наименьшим общим кратным pq , pr , ps .Это наименьшее произведение из числа , которое содержит каждый из них в качестве множителей.

Пример 3.   Создайте НОК из этих трех терминов:   x ,   x 2 ,   x 3 .

Решение . LCM должен иметь коэффициент x .

ОКМ = х

.Следовательно, мы должны добавить еще один коэффициент x :

.

НОК = х 2

Наконец, LCM должен иметь коэффициенты x 3 , которые равны x · x · x . Следовательно,

НОК = х 3 .

x 3 — это наименьший продукт, содержащий x , x 2 и x 3 в качестве множителей.

Мы видим, что когда члены равны степени переменной — x , x 2 , x 3 — тогда их LCM является наивысшей степенью.

Задача 2.   Построить НОК каждой серии термов.

   а)   аб , до н.э. , кд . абс   б)   часть , часть , первая часть . номер
 
   в)   , 2 , 3 , 4 . а 4   г)   а 2 б , а б 2 . а 2 б 2

 д)    аб ,   кд . абс

Теперь посмотрим, как это связано со сложением дробей.

 
Пример 4.   Добавить:      3 
аб
 +    4 
до н.э.
 +    5 
компакт-диск

Решение .Чтобы складывать дроби, знаменатели должны быть одинаковыми. Поэтому в качестве общего знаменателя выбираем НОК исходных знаменателей. Выберите abcd . Затем преобразуйте каждую дробь в эквивалентную дробь со знаменателем abcd .

Общий знаменатель нужно написать только один раз:

 3 
аб
 +    4 
до н.э.
 +    5 
компакт-диск
  =   3 cd + 4 ad + 5 ab
        abcd

Чтобы перейти в эквивалентную дробь со знаменателем abcd , просто умножьте abcd на отсутствующие множители, а именно cd .Следовательно, мы должны также умножить 3 на cd . Это составляет первый член в числителе.

Чтобы преобразовать в эквивалентную дробь со знаменателем abcd , умножьте до н.э. на отсутствующие множители, а именно и . Следовательно, мы должны также умножить 4 на и . Это составляет второй член в числителе.

Чтобы преобразовать в эквивалентную дробь со знаменателем abcd , умножьте cd на отсутствующие множители, а именно abcd .Следовательно, мы должны также умножить 5 на ab . Это объясняет последний член в числителе.

Вот как складывать дроби с разными знаменателями.

Каждый множитель исходных знаменателей должен быть множителем
общего знаменателя.

Проблема 3.   Добавить.

  а)     5 
аб
 +    6  
ак
 =   5 в + 6 б
    абв
  б)     2 
шт.
 +    3 
кв.
 +  
руб.
 =   2 шт. + 3 шт. + 4 шт.
        шт.
  в)     7 
аб
 +    8 
до н.э.
 +     9  
абв
 =   7 в + 8 а + 9
       абв
  г)    1
а
 +    2 
а 2
 +   3
а 3
 =   a 2 + 2 a + 3
       a 3
  д)   
а 2 б
 +  
а б 2
 =   3 б + 4 а
    а 2 б 2
  е)     5 
аб
 +    6 
cd
 =   5 cd + 6 ab
    abcd
  г)        _2_   
x ( x + 2)
 +         __3__      
( x + 2)( x − 3)
  =   2( x — 3) + 3 x  
x ( x + 2)( x — 3)
 
    =   _ 2 x − 6 + 3 x _
x ( x + 2)( x − 3)
 
    =        _5 x − 6_    
x ( x + 2)( x − 3)

На 2-м уровне мы увидим аналогичную задачу, но знаменатели не будут факторизованы.

Задача 4.   Добавить:    1 −  1
а
 +   в + 1
  аб
. Но запишите ответ как

1 – дробь.

1 − 1
а
 +   в + 1
  аб
 =  1 − ( 1
а
 −  в + 1
  аб
)
 =  1 − b − ( c + 1)
ab       
 =  1 − б в − 1
аб       

Пример 5.Знаменатели без общих множителей.

Когда знаменатели не имеют общих делителей, их НОК является просто их произведением, mn .

а
м
 +   б
н
 =   ан + бм
    мн

Числитель появляется в результате «перекрестного умножения»:

и + бм

Однако этот метод будет работать только при сложении двух дробей, а знаменатели не имеют общих множителей.

Пример 6.        2   
x − 1
 −   1
х

Решение . У этих знаменателей нет общих множителей: 90 657 x 90 658 не является множителем 90 657 x 90 658 − 1. Это термин. Следовательно, НОК знаменателей является их произведением.

   2   
x − 1
 −   1
х
 =   2 x − ( x − 1)
   ( x − 1) x
 =   2 x x + 1
   ( x − 1) x
 =   _ x + 1_
( x − 1) x

Примечание:   Вычитается все   x − 1 .Поэтому мы пишем его в скобках — и его знаков меняются.

Задача 5.

  а)    x
и
 +   у
б
 =   xb + ya
     ab
    б)    x
5
 +   3 x
 2
 =   2 x + 15 x
    10
 =   17 x
 10
  в)       6   
x − 1
 +      3   
x + 1
  =   6( x + 1) + 3( x — 1)
    ( x + 1)( x — 1)
 
    =   6 x + 6 + 3 x — 3
  ( x + 1)( x — 1)
 
    =      _9 x + 3_   
( x + 1)( x − 1)
  г)       6   
x − 1
 −      3   
x + 1
  =   6( x + 1) − 3( x − 1)
    ( x + 1)( x − 1)
 
    =   6 x + 6 − 3 x + 3
  ( x + 1)( x − 1)
 
    =      _3 x + 9_   
( x + 1)( x − 1)
  д)       3   
x − 3
 −   2
х
  =   3 x − 2( x − 3)
   ( x − 3) x
 
    =   3 x − 2 x + 6
   ( x − 3) x
 
    =      x + 6  
( x − 3) x
  е)       3   
x − 3
 −   1
х
  =   3 x − ( x − 3)
   ( x − 3) x
 
    =   3 x x + 3
   ( x − 3) x
 
    =     2 x + 3 
( x − 3) x
  г)    1
х
 +   2
г
 +   3
я
  =   yz + 2 xz + 3 xy
        xyz
Пример 7.Добавить:    a б
в
.

Раствор.    Мы должны выразить через со знаменателем c.

Следовательно,

и + б
в
 =   ак + б
    в
.

Задача 6.

  а)    р
д
 +   р   =   р + кв
    кв
    б)    1
х
 −  1   =   1 − x
    x
  в)    x 1
х
 =   x 2 − 1
    x
    г)   1 −   1 
x 2
 =   x 2 − 1
    x 2
  д)   1 —     1   
x + 1
 =   x + 1 − 1
    x + 1
 =       x    
x + 1
  е)   3 +      2   
x + 1
 =   3 x + 3 + 2
    x + 1
 =   3 x + 5
  x + 1
Проблема 7.Напишите обратную величину   1
2
  +   1
3
.
  [ Подсказка :  Только одна дробь а
б
 имеет обратную связь; это б
а
.]
1
2
  +   1
3
  =   3 + 2
   6
  =   5
6
.
Следовательно, обратное число равно 6
5
.

2-й уровень

Следующий урок:  Уравнения с дробями

Содержание | Дом


Пожалуйста, сделайте пожертвование, чтобы TheMathPage оставался онлайн.
Даже 1 доллар поможет.


Copyright © 2021 Лоуренс Спектор

Вопросы или комментарии?

Электронная почта: [email protected]


Как вычитать дроби с разными знаменателями

Вычитание дробей, особенно с разными знаменателями, может показаться сложным на первый взгляд.Однако, как только вы освоите некоторые основные правила, это на самом деле довольно просто.

Сначала нам нужно понять состав дроби. Здесь есть две части – числитель и знаменатель, разделенные разделительной чертой.

Знаменатель — это нижняя цифра. Это показывает нам, на сколько равных частей было разделено одно целое. Числитель является верхней цифрой и показывает, сколько частей целого присутствует.

Чтобы успешно вычесть одну дробь из другой, нам нужно убедиться, что целое, с которым мы имеем дело в обоих случаях, разделено на одинаковое количество равных частей, т.е.е. что знаменатели одинаковы.

Пошаговое руководство по вычитанию дробей с разными знаменателями

Есть несколько быстрых приемов, которые можно использовать при вычитании дробей с разными знаменателями. Ниже мы объясним традиционный метод, поскольку именно его вам нужно будет применить, когда вас попросят показать свои работы на любом официальном экзамене.

При работе с правильными дробями (где числитель меньше знаменателя) и неправильными дробями (где числитель больше знаменателя) применяются одни и те же правила.

Шаг 1: Найдите наименьший общий знаменатель

Наименьший общий знаменатель (LCD) — это наименьшее общее кратное двух знаменателей, с которыми вы работаете.

Например, если нас попросили вычесть 2/3 из 2/6, мы знаем, что 6 кратно 3, поэтому 6 — это наш LCD.

Шаг 2: Найдите эквивалентную дробь

После того, как вы нашли ЖК-дисплей, вам нужно сохранить значение дробей прежним. Таким образом, при изменении знаменателя вам нужно применить то же изменение к числителю.

Используя приведенный выше пример, чтобы заменить знаменатель на 6, мы умножаем 3 на 2. Чтобы сохранить дробь равного значения, мы также должны умножить 2 (числитель) на 2. Это дает нам эквивалент дроби 4/ 6.

Повторите этот процесс и для второй фракции. В нашем примере знаменатель уже равен 6, поэтому никаких изменений не требуется.

Теперь у нас есть пересмотренное уравнение 4/6 — 2/6.

Шаг 3: Вычтите новые числители

Следующий этап прост: просто вычтите числители, которые у вас есть в вашем новом уравнении.В этом случае 4 — 2 = 2.

Возьмите полученную цифру и поместите ее над общим знаменателем. Это дает нам 2/6.

Шаг 4: При необходимости упростите ответ

Последний шаг — упростить дробь, если это возможно. Для этого вам нужно найти наибольший общий множитель, общий для обеих частей дроби, и разделить их на него.

В случае 2/6 наибольший общий делитель равен 2. Поскольку 2 ÷ 2 = 1, а 6 ÷ 2 = 3, наша упрощенная дробь равна 1/3.

2/3 — 2/6 = 1/3

Примеры вопросов

Ниже вы найдете два примера вопросов на вычитание дробей с разными знаменателями. Первое выражается в виде стандартного уравнения, второе — в виде более сложной словесной задачи.

Пример вопроса 1

Сколько будет 5/6 минус 13/25?

Начните с поиска ЖК-дисплея. В этом примере это не так просто, поэтому вам может быть полезно записать кратные наибольшему текущему знаменателю, чтобы помочь вам: 25, 50, 75, 100, 125, 150…

.

Теперь мы можем видеть, что первое кратное 25 делимому на 6 равно 150, так что это наш ЖК-дисплей.

Далее нам нужно найти наши эквивалентные дроби:

6 x 25 = 150, поэтому нам нужно использовать то же значение, чтобы умножить числитель, что даст 5 x 25 = 125. Таким образом, наша первая эквивалентная дробь будет 125/150.

Теперь переходим ко второму:

25 х 6 = 150 и 13 х 6 = 78. Наша вторая эквивалентная дробь равна 78/150.

Вычтите числители и поместите результат на ЖК-дисплей: 125/150 — 78/150 = 47/150.

Эта фракция уже имеет простейшую форму.

Ответ: 5/6 минус 13/25 = 47/150

Пример вопроса 2

Эмма готовится к марафону и поставила перед собой цель пробежать к концу недели. В понедельник она пробегает 7/15 дистанции. В среду она пробегает 4/5 дистанции.

Насколько дальше пробежала Эмма в среду по сравнению с понедельником?

Чтобы решить эту задачу, нам нужно вычесть расстояние, которое Эмма пробежала в понедельник, из того, сколько она пробежала в среду, поэтому наше уравнение будет выглядеть так: 4/5 — 7/15.

Затем мы находим наш ЖК-дисплей, который, как мы видим, равен 15. Мы находим эквивалент нашей первой дроби, умножая обе части на одно и то же значение: 5 x 3 = 15 и 4 x 3 = 12.

Таким образом, наша эквивалентная дробь равна 12/15.

Поскольку во второй дроби наш знаменатель уже равен 15, здесь никаких изменений не требуется.

Теперь мы можем вычесть наши числители (12 — 7 = 5) и поставить результат над знаменателем: 5/15.

Наконец, мы идентифицируем наибольший общий делитель 5 и 15 как 5 и делим обе части дроби для упрощения: 5 ÷ 5 = 1 и 15 ÷ 5 = 3.

Ответ: 4/5 минус 7/15 = 1/3

Вычитание дробей – методы и примеры

Как вычитать дроби?

Как и при сложении дробей, при вычитании дробей с общими знаменателями просто вычитаются числители и остается знаменатель.

Аналогичным образом, в случае дробей с разными знаменателями, сначала следует получить наименьшее общее кратное (НОК), а затем преобразовать дроби в эквивалентные дроби с НОК в качестве знаменателя.Но эти условия применимы только в том случае, если дроби не являются смешанными числами.

Пример 1

а. Решите: 2/5 – 1/4

Решение
Во-первых, сделайте знаменатели одинаковыми.

Умножить числитель и знаменатель 2/5 и 1/4 на 4 и 5 соответственно.

2/5× 4/4 = 8/20

1/4 x 5/5 = 5/20

Теперь выполните вычитание:

8/20 − 5/20 = 3/20

b. Вычтите 3/8 из 7/8

Решение
7/8 – 3/8
= (7 – 3)/8

= 1/2

c.Вычтите 5/6 из 11/6

Решение
11/6 – 5/6
= (11 – 5)/6
= 6/6
= 1/1
= 1

d. Вычтите 7/9 из 11/9

Решение
11/9 – 7/9
= (11 – 7)/9
= 4/9

e. Вычтите 4/6 из 16/6

Решение
16/6 – 4/6
= (16 – 4)/6

= 2/1

= 2

f. 1 – 2/3

Решение

  • Начнем с предположения, что целое число совпадает с числом более одного i.е. 1 равно 1/1

Следовательно, наше уравнение будет выглядеть так:

1/1-2/3

  • Затем мы продолжаем получать L.C.M. из двух знаменателей, которые будут равны 3, так как L.C.M. числа, и единица становится этим числом.
  • Затем мы делим этот L.C.M. на первый знаменатель, который равен 1, чтобы получить ответ 3, затем умножьте 1 на первый числитель, который равен 1, чтобы получить =3
  • Затем мы делим L.C.M. на второй знаменатель, который равен 3, чтобы получить ответ 1, затем умножьте 1 на второй числитель, который равен 2, чтобы получить =2
  • Затем мы вычтем два результата над L.СМ.

=1/1-2/3

= (3-2)/3

=1/3

Как вычитать смешанные числа?


Смешанные дроби можно вычитать так же, как и правильные дроби. Правила вычитания смешанных дробей такие же, как и при работе с правильными дробями. Существует два метода вычитания смешанных дробей.

Метод 1:

Следующие шаги выполняются при вычитании смешанных дробей:

  • Сначала преобразуйте все смешанные дроби в неправильные дроби.
  • Проверить, имеют ли неправильные дроби общий знаменатель, если нет, найти общий знаменатель дробей
  • Попробовать составить эквивалентную дробь
  • Вычесть числитель, оставив знаменатель одинаковым.
  • Если после вычитания получается неправильная дробь, преобразуйте ее обратно в смешанную дробь или уменьшите, если это правильная дробь 1 / 12

    = (6 × 3) + 1/3 + (3 × 12) + 1/12

    = 19/3 – 37/12

    = 19 × 4/3 × 4 – 37 × 1/12 × 1, (л.СМ. Из 3 и 12 = 12)

    = 76/12 — 37/12

    = 76 — 37/12

    = 39/12

    = 39/12

    = 13/4

    = 3 ¼

    Метод 2

    В этом методе смешанные фракции разбиваются на целые и части.

    • Вычитание целых частей дробей.
    • Проверить, совпадают ли знаменатели дробей, и если нет, найти общий знаменатель.
    • При необходимости составить эквивалентную дробь
    • Вычесть числители части дроби, сохранив знаменатель одинаковым.
    • Сложите разности целого числа и дробной части.

    Пример 3:

    6 1 / 1 / 3 — 3 1 / 12

    = (6 — 3) + (1/3 — 1/12)

    = 3 + (1/3 – 1/12)

    = 3 + (1 × 4/3 × 4 – 1 × 1/12 × 1) (НОК 12 и 3 = 12)

    = 3 + 4/12 – 1/12

    = 3 + (4 – 1)/12

    = 3 + 3/12

    = 3 + ¼

    = 3 ¼

    Как вычитать дроби с разными знаменателями?

    Вычитание дробей с разными знаменателями очень похоже на сложение дробей.При вычитании дробей с разными знаменателями важно вычислить общий знаменатель для всех дробей. Затем вычтите числители, сохраняя знаменатель постоянным.

    • Подберите общий знаменатель дробей, найдя наименьшее общее кратное знаменателей.
    • Перепишите дроби с новым общим знаменателем.
    • Вычесть числитель, сохранив знаменатель постоянным.

    Пример 4:
    5/6 – 3/4
    Решение :

    • Найдите НОК чисел 6 и 4, перечислив их множители, как показано ниже:
       1 20, 24, 28, 32, ….
      6, 12, 18, 24, 30, 36, 42, 48,….
    • В этом случае наименьшее общее кратное 4 и 6 равно 12,
    • Умножьте каждую дробь на НОК как:

    5 /6 = 5/6 х 2/2 = 10/12 и 3/4 = 3/4 х 3/3 = 9/12.

    • Теперь вычтите числители, сохраняя знаменатели постоянными.

    10/12 – 9/12 = 1/12

    Отсюда 5/6 – 3/4 = 1/12

    • Список кратных 5 и 3.

    5, 10, 15, 20, 25, 30,….

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *